Обсуждение участника:Sancho20021 — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Оценка на количество линейных программ над \{\downarrow\} длины r)
(Оценка на количество линейных программ над \{\downarrow\} длины r)
Строка 44: Строка 44:
 
|id=Лемма1
 
|id=Лемма1
 
|statement=<tex>\exists</tex> булева функция <tex>f: size_B(f) \geq \frac{2^n}{2n}</tex>
 
|statement=<tex>\exists</tex> булева функция <tex>f: size_B(f) \geq \frac{2^n}{2n}</tex>
|proof=Предположим противное, пусть размер всех линейных программ <tex>r < \frac{2^n}{2n} </tex>
+
|proof=Посчитаем число линейных программ длиной <tex>r < \frac{2^n}{2n} </tex>
  
 
<tex>\log_2{K_{n, r}} \leq 2 r \log_2 {(n+r)}  < \frac{2 \cdot 2^n}{2n} \log_2{(n+ \frac{2^n}{2n})} \leq \frac{2^n}{n} \log_2 {2^n} = 2^n \Rightarrow</tex>
 
<tex>\log_2{K_{n, r}} \leq 2 r \log_2 {(n+r)}  < \frac{2 \cdot 2^n}{2n} \log_2{(n+ \frac{2^n}{2n})} \leq \frac{2^n}{n} \log_2 {2^n} = 2^n \Rightarrow</tex>
<tex>K_{n, r} < 2^{2^n}</tex> {{---}} такого быть не может, следовательно, <tex>\exists \; f_n: r> \frac{2^n}{2n} </tex>
+
<tex>K_{n, r} < 2^{2^n}</tex> {{---}} это меньше, чем число всех линейных программ, следовательно, <tex>\exists \; f_n: r> \frac{2^n}{2n} </tex>
  
 
Обобщим для произвольного <tex>c</tex>
 
Обобщим для произвольного <tex>c</tex>
Строка 56: Строка 56:
 
<tex>K_{n,r}<2^{\frac{2^n}{c}} !!! </tex>
 
<tex>K_{n,r}<2^{\frac{2^n}{c}} !!! </tex>
 
}}
 
}}
 +
Таким образом, количество линейных программ длины <tex>< \frac{2^n}{2cn}</tex> меньше <tex>2^{\frac{2^n}{c}}</tex>
 +
===Возвращение к теореме о нижней оценке===
 +
<tex>|F_g| \leq 2^{\frac{2^n}{c}} \Rightarrow \frac{|F_g|}{2^{2^n}} \leq \frac{2^\frac{2^n}{c}}{2^{2^n}} = 2^{2^n (\overset{< 0}{\frac{1}{c}-1})}\rightarrow 0</tex>

Версия 20:30, 7 июня 2020

Теорема о нижней оценке на число элементов в схеме

Теорема:
Большинство булевых функций требуют для реализации порядка [math]\Omega(\frac{2^n}{n})[/math] функциональных элементов, где [math]n[/math] — количество аргументов функции.

Формальная запись теоремы: [math]f(n) = \frac{2^n}{n} \; \; \; g(n): \frac{g}{f} \longrightarrow 0[/math]

[math]F_g = \{\text{Булевы функции, } size \leq g(n)\}[/math]

Тогда [math]\frac{|F_g|}{2^{2^n}} \longrightarrow 0[/math]

Для доказательства этой теоремы нам понадобится доказать несколько вспомогательных утверждений.

Определение:
Линейная программа — список строк вида [math](a, (i_1, \ldots, i_k))[/math], где [math]a \in B[/math] (базис), [math]a: \mathbb B^k \rightarrow \mathbb B[/math], [math]i_j[/math] — индексы переменных.

Пример линейной программы

Линейная программа для функции [math]x_1 \oplus x_2[/math] над базисом [math]\{ \land, \lor, \lnot \}[/math]

[math]y_1 = \lnot x_1[/math]

[math]y_2 = \lnot x_2[/math]

[math]y_3 = x_1 \land y_2[/math]

[math]y_4 = x_2 \land y_1[/math]

[math]y_5 = y_3 \lor y_4[/math]

Длина линейной программы — количество строк.

Теорема:
Для булевой функции [math]f \; \exists[/math] линейная программа длины [math]r \Leftrightarrow \exists [/math] схема, использующая [math]r[/math] функциональных элементов.
Доказательство:
[math]\triangleright[/math]

Чтобы построить по схеме программу, можно занумеровать элементы схемы в порядке топологической сортировки, и для каждого элемента [math]m[/math] с функцией [math]a[/math] и входами [math]i_1, \ldots, i_k[/math] сопоставить строчку линейной программы с номером [math]m[/math] вида [math](a, (i_1, \ldots, i_k))[/math].

Построение функциональной схемы по линейной программе очевидно.
[math]\triangleleft[/math]

Оценка на количество линейных программ над [math]\{\downarrow\}[/math] длины [math]r[/math]

[math]n[/math] — количество аргументов булевой функции.

Количество линейных программ [math]= K_{n, r} = n^2 \cdot (n+1)^2 \cdot (n+2)^2 \cdot \ldots \cdot (n+r-1)^2 \leq (n+r)^{2r}[/math]

[math]\log_2{K_{n, r}} \leq \log_2 {(n+r)^{2r}} = 2r \log_2 {(n+r)}[/math]

Лемма:
[math]\exists[/math] булева функция [math]f: size_B(f) \geq \frac{2^n}{2n}[/math]
Доказательство:
[math]\triangleright[/math]

Посчитаем число линейных программ длиной [math]r \lt \frac{2^n}{2n} [/math]

[math]\log_2{K_{n, r}} \leq 2 r \log_2 {(n+r)} \lt \frac{2 \cdot 2^n}{2n} \log_2{(n+ \frac{2^n}{2n})} \leq \frac{2^n}{n} \log_2 {2^n} = 2^n \Rightarrow[/math] [math]K_{n, r} \lt 2^{2^n}[/math] — это меньше, чем число всех линейных программ, следовательно, [math]\exists \; f_n: r\gt \frac{2^n}{2n} [/math]

Обобщим для произвольного [math]c[/math]

[math]r\lt \frac{2^n}{2cn}[/math]

[math]\log_2 K_{n,r}\leq 2r\log_2(n+r)\lt \frac{2\cdot 2^n}{2cn}\log_2(n+\frac{2^n}{2cn})\leq \frac{2^n}{cn}\log_2 2^n=\frac{2^n}{c} \Rightarrow[/math]

[math]K_{n,r}\lt 2^{\frac{2^n}{c}} !!! [/math]
[math]\triangleleft[/math]

Таким образом, количество линейных программ длины [math]\lt \frac{2^n}{2cn}[/math] меньше [math]2^{\frac{2^n}{c}}[/math]

Возвращение к теореме о нижней оценке

[math]|F_g| \leq 2^{\frac{2^n}{c}} \Rightarrow \frac{|F_g|}{2^{2^n}} \leq \frac{2^\frac{2^n}{c}}{2^{2^n}} = 2^{2^n (\overset{\lt 0}{\frac{1}{c}-1})}\rightarrow 0[/math]