Обсуждение участника:Sancho20021 — различия между версиями
(→Оценка на количество линейных программ над \{\downarrow\} длины r) |
м (→Оценка на количество линейных программ над \{\downarrow\} длины r) |
||
Строка 54: | Строка 54: | ||
<tex>\log_2 K_{n,r}\leq 2r\log_2(n+r)<\frac{2\cdot 2^n}{2cn}\log_2(n+\frac{2^n}{2cn})\leq \frac{2^n}{cn}\log_2 2^n=\frac{2^n}{c} \Rightarrow</tex> | <tex>\log_2 K_{n,r}\leq 2r\log_2(n+r)<\frac{2\cdot 2^n}{2cn}\log_2(n+\frac{2^n}{2cn})\leq \frac{2^n}{cn}\log_2 2^n=\frac{2^n}{c} \Rightarrow</tex> | ||
− | <tex>\Rightarrow K_{n,r}<2^{\frac{2^n}{c}} \Rightarrow \exists \; f_n: r> \frac{2^n}{ | + | <tex>\Rightarrow K_{n,r}<2^{\frac{2^n}{c}} \Rightarrow \exists \; f_n: r> \frac{2^n}{2cn} </tex> |
}} | }} | ||
Таким образом, количество линейных программ длины <tex>< \frac{2^n}{2cn}</tex> меньше <tex>2^{\frac{2^n}{c}}</tex> | Таким образом, количество линейных программ длины <tex>< \frac{2^n}{2cn}</tex> меньше <tex>2^{\frac{2^n}{c}}</tex> |
Версия 20:51, 7 июня 2020
Теорема о нижней оценке на число элементов в схеме
Теорема: |
Большинство булевых функций требуют для реализации порядка функциональных элементов, где — количество аргументов функции.
Формальная запись теоремы: Тогда |
Для доказательства этой теоремы нам понадобится доказать несколько вспомогательных утверждений.
Определение: |
Линейная программа — список строк вида | , где (базис), , — индексы переменных.
Пример линейной программы
Линейная программа для функции
над базисом
Длина линейной программы — количество строк.
Теорема: |
Для булевой функции линейная программа длины схема, использующая функциональных элементов. |
Доказательство: |
Чтобы построить по схеме программу, можно занумеровать элементы схемы в порядке топологической сортировки, и для каждого элемента с функцией и входами сопоставить строчку линейной программы с номером вида . Построение функциональной схемы по линейной программе очевидно. |
Оценка на количество линейных программ над длины
— количество аргументов булевой функции.
Количество линейных программ
Лемма: |
булева функция |
Доказательство: |
Посчитаем число линейных программ длиной
Обобщим для произвольного
|
Таким образом, количество линейных программ длины
меньшеВозвращение к теореме о нижней оценке