Лемма Шварца-Зиппеля — различия между версиями
Alant (обсуждение | вклад) (Новая страница: «== Формулировка == Пусть задан полином <tex> q(x_1, ..., x_n) \not\equiv 0 </tex> степени <tex> d </tex> над полем <tex> …») |
Alant (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
== Формулировка == | == Формулировка == | ||
− | Пусть задан полином <tex> q(x_1, ..., x_n) \not\equiv 0 </tex> степени <tex> d </tex> над полем <tex> F </tex>, а также произвольное <tex> S \subset F: |S| < \infty </tex>. Пусть также <tex> \{r_i\} </tex> - набор независимых случайных величин, равномерно распределенных в <tex> F </tex>. Тогда <tex> p(q(r_1, ..., r_n) = 0) \le \frac{d}{|S|} </tex>. | + | Пусть задан полином <tex> q(x_1, ..., x_n) \not\equiv 0 </tex> степени <tex> d </tex> над полем <tex> F </tex>, а также произвольное <tex> S \subset F: |S| < \infty </tex>. Пусть также <tex> \{r_i\}_{i=1}^n </tex> - набор независимых случайных величин, равномерно распределенных в <tex> F </tex>. Тогда <tex> p(q(r_1, ..., r_n) = 0) \le \frac{d}{|S|} </tex>. |
== Доказательство == | == Доказательство == | ||
+ | Проведем доказательство теоремы индукцией по <tex> n </tex>. | ||
+ | |||
+ | === База индукции === | ||
+ | В случае, когда <tex> n = 1 </tex>, утвержение следует из того, что произвольный полином степени <tex> d </tex> над полем имеет не более чем <tex> d </tex> корней. | ||
+ | |||
+ | === Индукционный переход === | ||
+ | Пусть утверждение верно для всех полиномов степени <tex> n - 1 </tex> (и для всех меньших). Разложим <tex> q </tex> по степеням <tex> x_n </tex>: | ||
+ | |||
+ | <tex> q(x_1, ..., x_n) = \sum_{i=0}^d q_i(x_1, ..., x_{n-1}) x_n^i </tex> | ||
+ | |||
+ | Так как <tex> q \not\equiv 0 </tex>, хотя бы один <tex> q_i \not\equiv 0 </tex>. Пусть <tex> j = max \{ i | q_i \not\equiv 0\} </tex> |
Версия 20:12, 13 апреля 2010
Формулировка
Пусть задан полином
степени над полем , а также произвольное . Пусть также - набор независимых случайных величин, равномерно распределенных в . Тогда .Доказательство
Проведем доказательство теоремы индукцией по
.База индукции
В случае, когда
, утвержение следует из того, что произвольный полином степени над полем имеет не более чем корней.Индукционный переход
Пусть утверждение верно для всех полиномов степени
(и для всех меньших). Разложим по степеням :
Так как
, хотя бы один . Пусть