Компьютерное зрение в микроскопии — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
Компьютерное зрение помогает биологам автоматизировать обработку изображений, полученных с микроскопа. С помощью сверточных нейронных сетей стало возможным классифицировать клетки, отслеживать внутриклеточные и межклеточные процессы, сегментировать полученные изображения, улучшать их качество и решать другие задачи без непосредственного участия человека.  
+
Компьютерное зрение помогает автоматизировать обработку изображений микроскопии. С помощью сверточных нейронных сетей стало возможным эффективно и точно классифицировать клетки, отслеживать внутриклеточные и межклеточные процессы, сегментировать полученные изображения, улучшать их качество и решать другие задачи без непосредственного участия человека.  
  
 
= Задачи компьютерного зрения в микроскопии =
 
= Задачи компьютерного зрения в микроскопии =
 
== Классификация клеток ==
 
== Классификация клеток ==
Классификация клеток является базовой задачей биомедицины. Одной из острых проблем является обнаружение у человека раковых клеток. Для частичного решения этой проблемы необходимо уметь их идентифицировать. Для классификации используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение.  
+
Классификация клеток является базовой задачей биомедицины. Многообразие признаков, по которым можно делить клетки, велико, но для некоторых уже существуют свертчные нейросети.
[[Файл:microscopy_cnn.png|center|600px|thumb|Архитектура сверточной нейронной сети из [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213626/ статьи.]]]
+
=== Определение фазы клетки в клеточном цикле ===
 +
Для определения фазы клеточного цикла, в которой находится клетка, используется сверточная нейросеть, которая принимает на вход изображение, сделанное при помощи микроскопии и дает на выходе классификацию каждой клетки, а также визуализирует процесс клеточного цикла.
 +
[[Файл:microscopy_cnn.png|center|600px|thumb|Архитектура сверточной нейронной сети для классификации раковых клеток из [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213626/ статьи.]]]
 +
Особенностью работы алгоритма является то, что для работы нейросети необходимо разметить только небольшую часть данных, на основании чего она далее учится размечать самостоятельно.
 +
=== Идентификация раковых клеток ===
 +
Для классификации раковых клеток используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение.  
 +
[[Файл:microscopy_cnn.png|center|600px|thumb|Архитектура сверточной нейронной сети для классификации раковых клеток из [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213626/ статьи.]]]
 
Такая сверточная сеть лучше справляется с задачей классификации клеток по сравнению с экспертом-человеком, особенно на изображениях с недостаточно хорошим качеством.  
 
Такая сверточная сеть лучше справляется с задачей классификации клеток по сравнению с экспертом-человеком, особенно на изображениях с недостаточно хорошим качеством.  
 +
 +
 +
 +
 
== Отслеживание объектов и процессов ==
 
== Отслеживание объектов и процессов ==
  

Версия 16:06, 4 января 2021

Компьютерное зрение помогает автоматизировать обработку изображений микроскопии. С помощью сверточных нейронных сетей стало возможным эффективно и точно классифицировать клетки, отслеживать внутриклеточные и межклеточные процессы, сегментировать полученные изображения, улучшать их качество и решать другие задачи без непосредственного участия человека.

Задачи компьютерного зрения в микроскопии

Классификация клеток

Классификация клеток является базовой задачей биомедицины. Многообразие признаков, по которым можно делить клетки, велико, но для некоторых уже существуют свертчные нейросети.

Определение фазы клетки в клеточном цикле

Для определения фазы клеточного цикла, в которой находится клетка, используется сверточная нейросеть, которая принимает на вход изображение, сделанное при помощи микроскопии и дает на выходе классификацию каждой клетки, а также визуализирует процесс клеточного цикла.

Архитектура сверточной нейронной сети для классификации раковых клеток из статьи.

Особенностью работы алгоритма является то, что для работы нейросети необходимо разметить только небольшую часть данных, на основании чего она далее учится размечать самостоятельно.

Идентификация раковых клеток

Для классификации раковых клеток используется сверточная нейронная сеть с архитектурой VGG-16, а также трансферное обучение.

Архитектура сверточной нейронной сети для классификации раковых клеток из статьи.

Такая сверточная сеть лучше справляется с задачей классификации клеток по сравнению с экспертом-человеком, особенно на изображениях с недостаточно хорошим качеством.



Отслеживание объектов и процессов

Сегментация изображений

Улучшение качества

См. также

  1. Компьютерное зрение
  2. Задача нахождения объектов на изображении

Примечания

Источники информации