Отношение рёберной двусвязности — различия между версиями
(→Реберная двусвязность) |
|||
Строка 22: | Строка 22: | ||
Составим пути <tex>S_1 = P_1 \circ Q_1 </tex> и <tex>S_2 = P_2 \circ Q_2 </tex>. Сделаем пути <tex>S_1, S_2 </tex> [[Теорема о существовании простого пути в случае существования пути|простыми]]. Получим два реберно-непересекающихся пути <tex>S_1, S_2 </tex>. Действительно, <tex>S_1 \land S_2 = \varnothing</tex>, так как <tex>P_1 \land P_2 = \varnothing </tex> (реберная двусвязность <tex>u</tex> и <tex>v</tex>), <tex>Q_1 \land Q_2 = \varnothing </tex> (реберная двусвязность <tex>w</tex> и <tex>v</tex>). | Составим пути <tex>S_1 = P_1 \circ Q_1 </tex> и <tex>S_2 = P_2 \circ Q_2 </tex>. Сделаем пути <tex>S_1, S_2 </tex> [[Теорема о существовании простого пути в случае существования пути|простыми]]. Получим два реберно-непересекающихся пути <tex>S_1, S_2 </tex>. Действительно, <tex>S_1 \land S_2 = \varnothing</tex>, так как <tex>P_1 \land P_2 = \varnothing </tex> (реберная двусвязность <tex>u</tex> и <tex>v</tex>), <tex>Q_1 \land Q_2 = \varnothing </tex> (реберная двусвязность <tex>w</tex> и <tex>v</tex>). | ||
<tex>P_1 \land Q_2 = </tex> {какой-то путь} или <tex>P_2 \land Q_1 = </tex> {какой-то путь} не влияют на реберную двусвязность. | <tex>P_1 \land Q_2 = </tex> {какой-то путь} или <tex>P_2 \land Q_1 = </tex> {какой-то путь} не влияют на реберную двусвязность. | ||
− | |||
Утверждение доказано. | Утверждение доказано. | ||
}} | }} |
Версия 06:30, 6 марта 2011
Реберная двусвязность
Определение: |
Две вершины графа называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути. | и
Теорема: |
Отношение реберной двусвязности является отношением эквивалентности на вершинах. |
Доказательство: |
Пусть - отношение реберной двусвязности.Рефлексивность: (Очевидно)Симметричность: (Очевидно)Транзитивность: иДоказательство: Пусть (реберно-непересекающиеся пути) и (реберно-непересекающиеся пути).Составим пути простыми. Получим два реберно-непересекающихся пути . Действительно, , так как (реберная двусвязность и ), (реберная двусвязность и ). {какой-то путь} или {какой-то путь} не влияют на реберную двусвязность. Утверждение доказано. и . Сделаем пути |
Компоненты реберной двусвязности
Определение: |
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности. |