Биномиальная куча — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 9: Строка 9:
 
*имеет корень степени k; степерь всех остальных вершин меньше степени корня биномиального дерева. Кроме того, если дочерние узлы корня пронумеровать слева направо числами <tex> k - 1, k - 2, \dots, 0</tex>, то i-й дочерний узел корня является корнем биномиального дерева <tex>B_i</tex>
 
*имеет корень степени k; степерь всех остальных вершин меньше степени корня биномиального дерева. Кроме того, если дочерние узлы корня пронумеровать слева направо числами <tex> k - 1, k - 2, \dots, 0</tex>, то i-й дочерний узел корня является корнем биномиального дерева <tex>B_i</tex>
 
*максимальная степень произвольного узла в биномиальном дереве с n узлами равна <tex>\lg (n)</tex>.
 
*максимальная степень произвольного узла в биномиальном дереве с n узлами равна <tex>\lg (n)</tex>.
 +
{{Определение
 +
|definition=
 +
'''Биномиальная пирамида H''' {{---}} представляет собой множество биномиальных деревьев, которые удовлетворяют следующим свойствам '''биномиальных пирамид'''.
 +
*Каждое биномиальное дерево в Н подчиняется свойству '''неубывающей пирамиды''': ключ узла не меньше ключа его родительского узла (упорядоченное в соответствии со свойсвом неубывающей прирамиды дерево).
 +
* Для любого неотрицательного целого k найдется не более одного биномиального дерева Н, чей корень имеет степень K.

Версия 22:17, 13 марта 2011

Определение:
Биномиальное дерево [math]B_k[/math] — дерево, определяемое для каждого [math]k = 0, 1, 2, \dots [/math] следующим образом: [math]B_0[/math] - дерево, состоящее из одного узла высоты 0, то есть состоит из одного узла; [math]B_k[/math] состоит из двух биномиальных деревьев [math]B_{k-1}[/math], связанны вместе таким образом, что корень одного из них является крайним левым дочерним узлом корня второго дерева.

Свойства биномиальных деревьев. Биномиальное дерево [math]B_k[/math] с n вершинами:

  • имеет [math]2^k[/math] узлов;
  • имеет высоту k;
  • имеет ровно [math]{k\choose i}[/math] узлов на высоте [math]i = 0, 1, 2, \dots[/math];
  • имеет корень степени k; степерь всех остальных вершин меньше степени корня биномиального дерева. Кроме того, если дочерние узлы корня пронумеровать слева направо числами [math] k - 1, k - 2, \dots, 0[/math], то i-й дочерний узел корня является корнем биномиального дерева [math]B_i[/math]
  • максимальная степень произвольного узла в биномиальном дереве с n узлами равна [math]\lg (n)[/math].

{{Определение |definition= Биномиальная пирамида H — представляет собой множество биномиальных деревьев, которые удовлетворяют следующим свойствам биномиальных пирамид.

  • Каждое биномиальное дерево в Н подчиняется свойству неубывающей пирамиды: ключ узла не меньше ключа его родительского узла (упорядоченное в соответствии со свойсвом неубывающей прирамиды дерево).
  • Для любого неотрицательного целого k найдется не более одного биномиального дерева Н, чей корень имеет степень K.