Блендинг изображений — различия между версиями
м (Метки: правка с мобильного устройства, правка из мобильной версии) |
Wafemand (обсуждение | вклад) м (Точка, точка, запятая) |
||
Строка 28: | Строка 28: | ||
Пусть $f_S$ {{---}} скалярная функция, определенная на $P \setminus int(\Omega)$, задает фоновое изображение $S$; $f$ {{---}} неизвестная скалярная функция, определенная на $int(\Omega)$, задает, каким образом должно выглядеть результат блендинга в области вставки. | Пусть $f_S$ {{---}} скалярная функция, определенная на $P \setminus int(\Omega)$, задает фоновое изображение $S$; $f$ {{---}} неизвестная скалярная функция, определенная на $int(\Omega)$, задает, каким образом должно выглядеть результат блендинга в области вставки. | ||
− | $v_I$ {{---}} векторное поле, определенное на $\Omega$. В качестве $v_I$ возьмем градиент вставляемого изображения $I$: $v_I = \nabla f_I$ | + | $v_I$ {{---}} векторное поле, определенное на $\Omega$. В качестве $v_I$ возьмем градиент вставляемого изображения $I$: $v_I = \nabla f_I$. |
Нашей задачей является поиск такой функции $f$, чтобы блендинговое изображение выглядело реалистично. Для этого минимизируем разность градиента функции $f$ и векторного поля $v_I$, считая, что $f = f_S$ на границе $\Omega$. | Нашей задачей является поиск такой функции $f$, чтобы блендинговое изображение выглядело реалистично. Для этого минимизируем разность градиента функции $f$ и векторного поля $v_I$, считая, что $f = f_S$ на границе $\Omega$. | ||
$$ | $$ | ||
− | \underset{f}{\mathrm{min}} \underset{\Omega}{\iint} |\nabla f - v_I|^2, \text{где } f|_{\partial \Omega} = f_S|_{\partial \Omega} | + | \underset{f}{\mathrm{min}} \underset{\Omega}{\iint} |\nabla f - v_I|^2, \text{где } f|_{\partial \Omega} = f_S|_{\partial \Omega}. |
$$ | $$ | ||
Решение задачи минимизации является единственным решением уравнения Пуассона для граничных условий Дирихле. | Решение задачи минимизации является единственным решением уравнения Пуассона для граничных условий Дирихле. | ||
Строка 40: | Строка 40: | ||
Пусть $p$ {{---}} координаты $(x, y)$ пикселя двухмерного изображения. За $Img_p$ обозначим значение пикселя с координатами $p$ изображения $Img$. Пусть $\Omega = \left\{ p\;|\;M_p = 1 \right\}$. Тогда $\partial \Omega$ {{---}} координаты границы вставляемой области, а $int(\Omega)$ {{---}} внутренность области. | Пусть $p$ {{---}} координаты $(x, y)$ пикселя двухмерного изображения. За $Img_p$ обозначим значение пикселя с координатами $p$ изображения $Img$. Пусть $\Omega = \left\{ p\;|\;M_p = 1 \right\}$. Тогда $\partial \Omega$ {{---}} координаты границы вставляемой области, а $int(\Omega)$ {{---}} внутренность области. | ||
− | Пусть $N_p$ {{---}} множество соседей $p$ (максимум четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$). Для всех пар $(p, q)$ таких, что $q \in N_p$, введем $v_{pq} = I_p - I_q$ | + | Пусть $N_p$ {{---}} множество соседей $p$ (максимум четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$). Для всех пар $(p, q)$ таких, что $q \in N_p$, введем $v_{pq} = I_p - I_q$. |
Введем переменные $O_p, p \in \Omega$. Так как мы хотим сделать результат бесшовным, пиксели $O_p, p \in \partial\Omega$, сделаем равными $S_p$. Для $p, q \in int(\Omega),\; q \in N_p$ постараемся найти такое $O$, чтобы разность $O_p$ и $O_q$ была близка к $v_{pq}$. Для этого решим задачу минимизации: | Введем переменные $O_p, p \in \Omega$. Так как мы хотим сделать результат бесшовным, пиксели $O_p, p \in \partial\Omega$, сделаем равными $S_p$. Для $p, q \in int(\Omega),\; q \in N_p$ постараемся найти такое $O$, чтобы разность $O_p$ и $O_q$ была близка к $v_{pq}$. Для этого решим задачу минимизации: | ||
$$ | $$ | ||
− | \underset{O_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2, \text{где } O_p = S_p, p \in \partial \Omega | + | \underset{O_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2, \text{где } O_p = S_p, p \in \partial \Omega. |
$$ | $$ | ||
Заметим, что функция, которую мы хотим минимизировать, квадратична относительно переменных $O_p, p \in int(\Omega)$. Для решения задачи минимизации вычислим частные производные по этим переменным и найдем значения переменных, при которых частные производные будут равны нулю. | Заметим, что функция, которую мы хотим минимизировать, квадратична относительно переменных $O_p, p \in int(\Omega)$. Для решения задачи минимизации вычислим частные производные по этим переменным и найдем значения переменных, при которых частные производные будут равны нулю. | ||
− | $$\frac{\partial{\underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2}}{\partial O_p} = \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right) - \underset{q \in N_p}{\sum} 2 \left(O_q - O_p - v_{qp}\right) = 2 \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right)$$ | + | $$\frac{\partial{\underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2}}{\partial O_p} = \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right) - \underset{q \in N_p}{\sum} 2 \left(O_q - O_p - v_{qp}\right) = 2 \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right).$$ |
Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$. | Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$. | ||
Строка 63: | Строка 63: | ||
O_p,\; \text{если } p \in int(\Omega) \\ | O_p,\; \text{если } p \in int(\Omega) \\ | ||
S_p,\; \text{иначе } | S_p,\; \text{иначе } | ||
− | \end{cases} | + | \end{cases}. |
$$ | $$ | ||
Строка 79: | Строка 79: | ||
|definition = | |definition = | ||
'''Матрица Грама''' (англ. ''Gram matrix'') {{---}} матрица попарных скалярных произведений. В нашем случае матрица отражает статистику выходов фильтров независимо от их расположения, что, в свою очередь, отражает стиль изображения. | '''Матрица Грама''' (англ. ''Gram matrix'') {{---}} матрица попарных скалярных произведений. В нашем случае матрица отражает статистику выходов фильтров независимо от их расположения, что, в свою очередь, отражает стиль изображения. | ||
− | $$G^l\left[I\right] \in \mathcal{R}^{N_l \times N_l}$$ | + | $$G^l\left[I\right] \in \mathcal{R}^{N_l \times N_l},$$ |
− | $$G^l\left[I\right] = F^l\left[I\right]F^l\left[I\right]^T$$}} | + | $$G^l\left[I\right] = F^l\left[I\right]F^l\left[I\right]^T.$$}} |
===Алгоритм Гатиса<ref name="GEB16">[https://rn-unison.github.io/articulos/style_transfer.pdf Image Style Transfer Using Convolutional Neural Networks] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge (2016)</ref>=== | ===Алгоритм Гатиса<ref name="GEB16">[https://rn-unison.github.io/articulos/style_transfer.pdf Image Style Transfer Using Convolutional Neural Networks] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge (2016)</ref>=== | ||
Строка 114: | Строка 114: | ||
|definition = | |definition = | ||
$\mathcal{L}^{\gamma}_{hist}(S, O) = \displaystyle\sum_l \gamma_l \displaystyle\sum_{i, j} \left(F^l_{ij}\left[O\right] - R\left(F^l_{ij}\left[O\right]\right)\right)^2$ {{---}} функция потерь гистограмм, где | $\mathcal{L}^{\gamma}_{hist}(S, O) = \displaystyle\sum_l \gamma_l \displaystyle\sum_{i, j} \left(F^l_{ij}\left[O\right] - R\left(F^l_{ij}\left[O\right]\right)\right)^2$ {{---}} функция потерь гистограмм, где | ||
− | $\gamma_l$ {{---}} вклад $l$-го слоя в функцию потерь}} | + | $\gamma_l$ {{---}} вклад $l$-го слоя в функцию потерь.}} |
'''Замечание:''' Если в случае остальных функций потерь нетрудно посчитать производную, то здесь могут возникнуть проблемы. Но поскольку $\displaystyle\frac{\partial \mathcal{L}_{hist}}{\partial F^l_{ij}\left[O\right]}$ является нулём почти везде, авторы предлагают при подсчёте производной считать $R\left(F^l_{ij}\left[O\right]\right)$ константой, которая не зависит от $O$. | '''Замечание:''' Если в случае остальных функций потерь нетрудно посчитать производную, то здесь могут возникнуть проблемы. Но поскольку $\displaystyle\frac{\partial \mathcal{L}_{hist}}{\partial F^l_{ij}\left[O\right]}$ является нулём почти везде, авторы предлагают при подсчёте производной считать $R\left(F^l_{ij}\left[O\right]\right)$ константой, которая не зависит от $O$. | ||
Строка 201: | Строка 201: | ||
В первом проходе используется модифицированная функция потерь $\mathcal{L}_{Gatys}$, с тем лишь отличием, что в $\mathcal{L}^{\beta}_{style}$ к $F_l[S]$ применяется стилевой маппинг $P_l$. | В первом проходе используется модифицированная функция потерь $\mathcal{L}_{Gatys}$, с тем лишь отличием, что в $\mathcal{L}^{\beta}_{style}$ к $F_l[S]$ применяется стилевой маппинг $P_l$. | ||
− | $$\mathcal{L}_1(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{style}(S, O, P) \text{, где } w_{style} \text{ {{---}} вес стилевой функции потерь}$$ | + | $$\mathcal{L}_1(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{style}(S, O, P) \text{, где } w_{style} \text{ {{---}} вес стилевой функции потерь.}$$ |
'''Замечание:''' при посчёте градиента $\mathcal{L}^{\alpha}_{content}$ используются только пиксели внутри маски<ref>https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_gram.lua#L349</ref>. | '''Замечание:''' при посчёте градиента $\mathcal{L}^{\alpha}_{content}$ используются только пиксели внутри маски<ref>https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_gram.lua#L349</ref>. | ||
Строка 250: | Строка 250: | ||
При вычислении стилевого маппинга появляется очень много дублирующихся векторов, что даёт не очень хорошие результаты. Поэтому при вычислении матрицы Грама выкинем повторяющиеся векторы. Назовём эту функцию потерь $\mathcal{L}_{s1}$. | При вычислении стилевого маппинга появляется очень много дублирующихся векторов, что даёт не очень хорошие результаты. Поэтому при вычислении матрицы Грама выкинем повторяющиеся векторы. Назовём эту функцию потерь $\mathcal{L}_{s1}$. | ||
− | $$\mathcal{L}_2(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{s1}(S, O, P) + w_{hist}\mathcal{L}^{\gamma}_{hist}(S, O) + w_{tv}\mathcal{L}_{tv}(O) \text{, где } w_{style}, w_{hist}, w_{tv} \text{ {{---}} веса соответсвующих функций потерь}$$ | + | $$\mathcal{L}_2(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{s1}(S, O, P) + w_{hist}\mathcal{L}^{\gamma}_{hist}(S, O) + w_{tv}\mathcal{L}_{tv}(O) \text{, где } w_{style}, w_{hist}, w_{tv} \text{ {{---}} веса соответсвующих функций потерь.}$$ |
{| class="wikitable" style="background-color:#FFF; text-align:center" | {| class="wikitable" style="background-color:#FFF; text-align:center" | ||
Строка 265: | Строка 265: | ||
===Итоговый алгоритм=== | ===Итоговый алгоритм=== | ||
− | Теперь осталось запустить две стадии | + | Теперь осталось запустить две стадии: |
<font size="3em"> | <font size="3em"> | ||
Строка 286: | Строка 286: | ||
Описанный алгоритм даёт хорошие результаты в целом, но при ближайшем рассмотрении могут быть артефакты. Поэтому сделаем двухступенчатую постобработку (подробное описание есть в оригинальной статье<ref name="LPSB18"/>): | Описанный алгоритм даёт хорошие результаты в целом, но при ближайшем рассмотрении могут быть артефакты. Поэтому сделаем двухступенчатую постобработку (подробное описание есть в оригинальной статье<ref name="LPSB18"/>): | ||
# Переведём изображение в [https://en.wikipedia.org/wiki/CIELAB_color_space CIELAB] и применим [https://en.wikipedia.org/wiki/Guided_filter Guided filter] для a и b каналов. | # Переведём изображение в [https://en.wikipedia.org/wiki/CIELAB_color_space CIELAB] и применим [https://en.wikipedia.org/wiki/Guided_filter Guided filter] для a и b каналов. | ||
− | # С помощью алгоритма PatchMatch<ref name="BSFG09">https://www.researchgate.net/profile/Eli_Shechtman/publication/220184392_PatchMatch_A_Randomized_Correspondence_Algorithm_for_Structural_Image_Editing/links/02e7e520897b12bf0f000000.pdf Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman (2009)</ref> и того же Guided filter делаем так чтобы все патчи выходного изображения присутсвовали в стилевом (чтобы не было новых объектов или структур) | + | # С помощью алгоритма PatchMatch<ref name="BSFG09">https://www.researchgate.net/profile/Eli_Shechtman/publication/220184392_PatchMatch_A_Randomized_Correspondence_Algorithm_for_Structural_Image_Editing/links/02e7e520897b12bf0f000000.pdf Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman (2009)</ref> и того же Guided filter делаем так, чтобы все патчи выходного изображения присутсвовали в стилевом (чтобы не было новых объектов или структур). |
===Подбор гиперпараметров=== | ===Подбор гиперпараметров=== | ||
Строка 352: | Строка 352: | ||
|} | |} | ||
− | Введём гиперпараметр $\tau$ и возьмём $w_{style} = w_{hist} = \tau$, $w_{tv} = \tau\frac{10}{1 + \exp(10^4 * noise(S) - 25)}$, где $noise(S) = \underset{i,j}{\mathrm{med}}\left\{\left(O^l_{i, j} - O^l_{i-1, j}\right)^2 + \left(O^l_{i, j} - O^l_{i, j-1}\right)^2\right\}$<ref>[https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_paint.lua#L470 код функции $noise$</ref> | + | Введём гиперпараметр $\tau$ и возьмём $w_{style} = w_{hist} = \tau$, $w_{tv} = \tau\frac{10}{1 + \exp(10^4 * noise(S) - 25)}$, где $noise(S) = \underset{i,j}{\mathrm{med}}\left\{\left(O^l_{i, j} - O^l_{i-1, j}\right)^2 + \left(O^l_{i, j} - O^l_{i, j-1}\right)^2\right\}$<ref>[https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_paint.lua#L470 код функции $noise$.</ref> |
Для того чтобы подбирать $\tau$ авторы статьи использовали классификатор стилей изображений. Они взяли VGG-19, обучили её классифицировать $18$ различных стилей. Эти стили были разделены на $3$ категории с разными $\tau$. Используя $Softmax$ можно интерполировать необходимый $\tau$ по следующей таблице: | Для того чтобы подбирать $\tau$ авторы статьи использовали классификатор стилей изображений. Они взяли VGG-19, обучили её классифицировать $18$ различных стилей. Эти стили были разделены на $3$ категории с разными $\tau$. Используя $Softmax$ можно интерполировать необходимый $\tau$ по следующей таблице: | ||
Строка 440: | Строка 440: | ||
|definition = | |definition = | ||
'''Дискретный оператор Лапласа''' (фильтр Лапласа) $\mathbf{D}^2$ {{---}} аналог непрерывного оператора Лапласа $\nabla^2$, который позволяет выделять контуры изображения. | '''Дискретный оператор Лапласа''' (фильтр Лапласа) $\mathbf{D}^2$ {{---}} аналог непрерывного оператора Лапласа $\nabla^2$, который позволяет выделять контуры изображения. | ||
− | $$\mathbf{D}^2=\begin{bmatrix}0 & 1 & 0\\1 & -4 & 1\\0 & 1 & 0\end{bmatrix}$$ }} | + | $$\mathbf{D}^2=\begin{bmatrix}0 & 1 & 0\\1 & -4 & 1\\0 & 1 & 0\end{bmatrix}.$$ }} |
{| class="wikitable" style="float:right; clear:right;" | {| class="wikitable" style="float:right; clear:right;" | ||
!Исходное изображение | !Исходное изображение | ||
Строка 461: | Строка 461: | ||
На первом этапе изображение $I$ накладывается на фоновое изображение $S$ таким образом, чтобы были незаметны швы. | На первом этапе изображение $I$ накладывается на фоновое изображение $S$ таким образом, чтобы были незаметны швы. | ||
Построение начинается с белого шума $Z$, который оптимизируется в области вставки путем минимизации суммарной функции потерь $\mathcal{L}_{total}$, представленной взвешенной суммой всех функций потерь, описанных выше: | Построение начинается с белого шума $Z$, который оптимизируется в области вставки путем минимизации суммарной функции потерь $\mathcal{L}_{total}$, представленной взвешенной суммой всех функций потерь, описанных выше: | ||
− | $$ \mathcal{L}_{total}(Z) = w_{grad}\mathcal{L}_{grad}(I, S, B) + w_{cont}\mathcal{L}_{cont}(I, M, Z) + w_{style}\mathcal{L}_{style}(S, B) + w_{tv}\mathcal{L}_{tv}(B) + w_{hist}\mathcal{L}_{hist}(S, B) $$ | + | $$ \mathcal{L}_{total}(Z) = w_{grad}\mathcal{L}_{grad}(I, S, B) + w_{cont}\mathcal{L}_{cont}(I, M, Z) + w_{style}\mathcal{L}_{style}(S, B) + w_{tv}\mathcal{L}_{tv}(B) + w_{hist}\mathcal{L}_{hist}(S, B).$$ |
Отметим, что $\mathcal{L}_{cont}$ зависит от маски и отвечает за сохранение содержания $I$ в области вставки. | Отметим, что $\mathcal{L}_{cont}$ зависит от маски и отвечает за сохранение содержания $I$ в области вставки. | ||
Строка 489: | Строка 489: | ||
В отличие от предыдущего этапа, функция потерь не включает в себя $\mathcal{L}_{grad}$: | В отличие от предыдущего этапа, функция потерь не включает в себя $\mathcal{L}_{grad}$: | ||
− | $$\mathcal{L}_{total}(O) = w_{cont}\mathcal{L}_{cont}(B, O) + w_{style}\mathcal{L}_{style}(S, O) + w_{tv}\mathcal{L}_{tv}(O) + w_{hist}\mathcal{L}_{hist}(S, O)$$ | + | $$\mathcal{L}_{total}(O) = w_{cont}\mathcal{L}_{cont}(B, O) + w_{style}\mathcal{L}_{style}(S, O) + w_{tv}\mathcal{L}_{tv}(O) + w_{hist}\mathcal{L}_{hist}(S, O).$$ |
Минимизация происходит относительно результата алгоритма $O$, который инициализируется изображением $B$. | Минимизация происходит относительно результата алгоритма $O$, который инициализируется изображением $B$. |
Версия 20:20, 14 января 2021
Определение: |
Блендинг изображений (англ. image blending) — метод, позволяющий вставить часть одного изображения в другое таким образом, чтобы композиция изображений выглядела естественно, без швов на границах вставки и соответсвующими цветами и текстурами. |
Содержание
Блендинг Пуассона
Простая вставка одного изображения поверх другого нередко влечет заметный перепад яркости на границе вставки (рис. $1.1$). Метод Пуассона заключается в сглаживании этого перепада (рис. $1.2$) с целью сделать дефект менее заметным, используя градиент вставляемого изображения и значения пикселей фонового изображения на границе вставки.
Замечание: Для RGB изображений задача минимизации решается для каждого цветового канала отдельно.
Давайте обозначим за $S$ изображение, которое служит фоном, а за $I$ — изображение, вставляемое поверх $S$. Область вставки будем задавать двоичной маской $M$, содержащей единицы в области наложения. Например:
Фоновое изображение $S$ |
Накладываемое изображение $I$ |
Маска $M$ |
---|---|---|
Идея подхода
Пусть замкнутое множество $P \subset \mathbb{R}^2$ — область, на которой определено изображение $S$, а замкнутое множество $\Omega \subset P$ с границей $\partial\Omega$ и внутренностью $int(\Omega)$ — область вставки изображения $I$.
Пусть $f_S$ — скалярная функция, определенная на $P \setminus int(\Omega)$, задает фоновое изображение $S$; $f$ — неизвестная скалярная функция, определенная на $int(\Omega)$, задает, каким образом должно выглядеть результат блендинга в области вставки.
$v_I$ — векторное поле, определенное на $\Omega$. В качестве $v_I$ возьмем градиент вставляемого изображения $I$: $v_I = \nabla f_I$.
Нашей задачей является поиск такой функции $f$, чтобы блендинговое изображение выглядело реалистично. Для этого минимизируем разность градиента функции $f$ и векторного поля $v_I$, считая, что $f = f_S$ на границе $\Omega$. $$ \underset{f}{\mathrm{min}} \underset{\Omega}{\iint} |\nabla f - v_I|^2, \text{где } f|_{\partial \Omega} = f_S|_{\partial \Omega}. $$ Решение задачи минимизации является единственным решением уравнения Пуассона для граничных условий Дирихле. $$\nabla^2 f = \nabla^2 f_I \text{ на } \Omega, f|_{\partial \Omega} = f_S|_{\partial \Omega}, \text{где } \nabla^2 \text{— оператор Лапласа.}$$
Дискретный случай
Пусть $p$ — координаты $(x, y)$ пикселя двухмерного изображения. За $Img_p$ обозначим значение пикселя с координатами $p$ изображения $Img$. Пусть $\Omega = \left\{ p\;|\;M_p = 1 \right\}$. Тогда $\partial \Omega$ — координаты границы вставляемой области, а $int(\Omega)$ — внутренность области.
Пусть $N_p$ — множество соседей $p$ (максимум четыре пикселя, имеющих общую границу с $p$, т.е. пиксели со следующими координатами: $(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)$). Для всех пар $(p, q)$ таких, что $q \in N_p$, введем $v_{pq} = I_p - I_q$.
Введем переменные $O_p, p \in \Omega$. Так как мы хотим сделать результат бесшовным, пиксели $O_p, p \in \partial\Omega$, сделаем равными $S_p$. Для $p, q \in int(\Omega),\; q \in N_p$ постараемся найти такое $O$, чтобы разность $O_p$ и $O_q$ была близка к $v_{pq}$. Для этого решим задачу минимизации:
$$ \underset{O_p,\; p \in \Omega}{\mathrm{min}}\; \underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2, \text{где } O_p = S_p, p \in \partial \Omega. $$
Заметим, что функция, которую мы хотим минимизировать, квадратична относительно переменных $O_p, p \in int(\Omega)$. Для решения задачи минимизации вычислим частные производные по этим переменным и найдем значения переменных, при которых частные производные будут равны нулю. $$\frac{\partial{\underset{p, q \in \Omega}{\sum}\; \left(O_p - O_q - v_{pq}\right)^2}}{\partial O_p} = \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right) - \underset{q \in N_p}{\sum} 2 \left(O_q - O_p - v_{qp}\right) = 2 \underset{q \in N_p}{\sum} 2 \left(O_p - O_q - v_{pq}\right).$$
Приравнивая к нулю, получаем: $|N_p| O_p - \underset{q \in N_p}{\sum} O_q = \underset{q \in N_p}{\sum} v_{pq}$.
Добавим условие $O_p = S_p, p \in \partial \Omega$: $\;|N_p| O_p - \underset{q \in N_p \cap int(\Omega)}{\sum} O_q = \underset{q \in N_p \cap \partial \Omega}{\sum} S_q + \underset{q \in N_p}{\sum} v_{pq}$.
Для решения систем уравнений такого вида могут быть использованы итеративные алгоритмы Gauss-Seidel и V-cycle multigrid[1].
Получаем значения пикселей $O_p$, $p \in int(\Omega)$. Тогда результат $B$ блендинга Пуассона будет следующим: $$ B_p = \begin{cases} O_p,\; \text{если } p \in int(\Omega) \\ S_p,\; \text{иначе } \end{cases}. $$
Mетод Пуассона сдвигает цвета накладываемого изображения, сохраняя свойства градиента (т.е. если пиксель $I_{p1}$ был меньше $I_{p2}$, то после преобразования $I_{p1}$ не станет больше $I_{p2}$), однако само значение градиета может получиться другим.[2]
Трансфер стиля
Прежде чем переходить к гармонизации картин, рассмотрим задачу трансфера стиля с изображения $S$ на изображение $I$. Для этого используются выходы скрытых слоёв свёрточной нейронной сети VGG-19[3].
Основная идея генерации изображения — решение оптимизационной задачи $\mathcal{L}(I, S, O) \xrightarrow[O]{} min$, где $O$ — итоговое изображение, $\mathcal{L}(I, S, O)$ — функция потерь. Такую задачу можно решать градиентным спуском в пространстве изображений используя метод обратного распространения ошибки.
Определение: |
Пусть $F^l\left[I\right] \in \mathcal{R}^{N_l \times M_l}$ — выход $l$-го слоя сети на изображении $I$. Представим его как матрицу $N_l \times M_l$, где $N_l$ — количество фильтров в $l$-ом слое, $M_l$ — количество признаков (высота, умноженная на ширину). Тогда $F^l_{ij}\left[I\right]$ — $j$-ый признак $i$-го фильтра в $l$-ом слое. $F^l\left[I\right]$ отражает содержание изображения. |
Определение: |
Матрица Грама (англ. Gram matrix) — матрица попарных скалярных произведений. В нашем случае матрица отражает статистику выходов фильтров независимо от их расположения, что, в свою очередь, отражает стиль изображения.
$$G^l\left[I\right] \in \mathcal{R}^{N_l \times N_l},$$ $$G^l\left[I\right] = F^l\left[I\right]F^l\left[I\right]^T.$$ |
Алгоритм Гатиса[4]
Определение: |
$\mathcal{L}^{\alpha}_{content}(I, O) = \displaystyle\sum_l \frac{\alpha_l}{2 N_l M_l}\displaystyle\sum_{i, j} \left(F^l_{ij}\left[I\right] - F^l_{ij}\left[O\right]\right)^2$ — функция потерь содержания, где $\alpha_l$ — вклад $l$-го слоя в функцию потерь[5]. |
Определение: |
$\mathcal{L}^{\beta}_{style}(I, O) = \displaystyle\sum_l \frac{\beta_l}{2N_l^2} \displaystyle\sum_{i, j} \left(G^l_{ij}\left[I\right] - G^l_{ij}\left[O\right]\right)^2$ — функция потерь стиля, где $\beta_l$ — вклад $l$-го слоя в функцию потерь[5]. |
Итоговой функцией потерь будет $\mathcal{L}_{Gatys} = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{style}(I, O)$[5]. Вес $w_{style}$, векторы $\alpha$ и $\beta$ являются, в некотором смысле, гиперпараметрами алгоритма, которые нужно подбирать.
Авторы статьи показывают, что в качестве начальной инициализации можно брать изображение $I$, изображение $S$ или белый шум — алгоритм даёт похожие результаты в этих случаях.
Histogram Loss
Авторы другой статьи[6] показывают, что результаты, полученные с помощью $\mathcal{L}_{Gatys}$ нестабильны и предложили другую функцию потерь, основанную на сопоставлении гистограмм.
Определение: |
Сопоставление гистограмм (англ. Histogram matching) — метод обработки изображения, после которого гистограмма изображения совпадает с целевой гистограммой[7]. |
Определение: |
Пусть $R = histmatch(S, O)$ — отображение пикселей такое, что гистограмма $S$ совпадает с гистограммой $R(O)$. |
Определение: |
$\mathcal{L}^{\gamma}_{hist}(S, O) = \displaystyle\sum_l \gamma_l \displaystyle\sum_{i, j} \left(F^l_{ij}\left[O\right] - R\left(F^l_{ij}\left[O\right]\right)\right)^2$ — функция потерь гистограмм, где $\gamma_l$ — вклад $l$-го слоя в функцию потерь. |
Замечание: Если в случае остальных функций потерь нетрудно посчитать производную, то здесь могут возникнуть проблемы. Но поскольку $\displaystyle\frac{\partial \mathcal{L}_{hist}}{\partial F^l_{ij}\left[O\right]}$ является нулём почти везде, авторы предлагают при подсчёте производной считать $R\left(F^l_{ij}\left[O\right]\right)$ константой, которая не зависит от $O$.
Total variation loss
Также добавим ещё одну функцию потерь, которая удаляет шумы, при этом сохраняя важные детали изображения[8][9].
Определение: |
$\mathcal{L}_{tv}(O) = \displaystyle\sum_{i, j} \left(O^l_{i, j} - O^l_{i-1, j}\right)^2 + \left(O^l_{i, j} - O^l_{i, j-1}\right)^2$ — общая вариационная потеря (англ. Total variation loss). |
Глубокая гармонизация картин[10]
Для того чтобы вставить изображение в картину или рисунок нужно не только сделать бесшовный переход и изменить цвета, но ещё и изменить текстуру вставляемого изображения, например, сымитировать мазки кистью. Используем для этого комбинацию подходов из других статей[4][9][6].
Алгоритм будет состоять из двух проходов. Первый проход будет делать грубую гармонизацию, а второй — более тщательную. Отличаться они будут стилевым маппингом и функциями потерь.
Определение: |
Стилевым маппингом мы будем называть отображение $P : \mathcal{R}^{N_l \times M_l} \rightarrow \mathcal{R}^{N_l \times M_l}$, которое некоторым образом переставляет столбцы матрицы (не обязательно обратимо, то есть столбцы могут теряться и копироваться). Более формально, пусть $p(j)$ — новая позиция столбца $j$, тогда $P(Q)_{i, p(j)} = Q_{ij}$. |
Один проход будет состоять из $3$ частей:
- Входное $I$ и стилевое $S$ изображения подаются на вход нейронной сети VGG-19, так мы получаем $F^l_{ij}\left[I\right]$ и $F^l_{ij}\left[S\right]$.
- Для каждого слоя $l$ некоторым алгоритмом $\pi$ cтроится стилевой маппинг $P_l$, который сопоставляет столбцам из $F_l[I]$ столбцы из $F_l[S]$.
- Изображение $O$ восстанавливается градиентным спуском по пространству изображений с использованием функции потерь $\mathcal{L}$.
fun $SinglePassHarmonization$( $I$,// Входное изображение $M$,// Маска $S$,// Стилевое изображение $\pi$,// Алгоритм построения стилевого маппинга $\mathcal{L}$// Функция потерь ): // Строим матрицы $F[I]$ и $F[S]$ с помощью свёрточной сети VGG-19 $F[I] \leftarrow ComputeNeuralActivations(I)$ $F[S] \leftarrow ComputeNeuralActivations(S)$ // Строим стилевой маппинг $P \leftarrow \pi(F[I], M, F[S])$ // Градиентным спуском ищем изображение $O$, которое минимизирует $\mathcal{L}$ $O \leftarrow Reconstruct(I, M, S, P, \mathcal{L})$ return $O$
Первый проход
Определение: |
Вектор активации (англ. activation vector) — это столбец $F_l$. |
Определение: |
Патчем (англ. patch) для столбца $j$ будем называть тензор $3 \times 3 \times N_l$, который состоит из соседних векторов активации в тензоре выхода свёрточного слоя, с центром в $(x, y)$, где $j = y \times W_l + x$. |
Первый проход делает грубую гармонизацию, но при этом он хорошо работает с любыми стилями. Здесь используется алгоритм $IndependentMapping$ для построения стилевого маппинга. Этот алгоритм для каждого столбца $j$ в $F_l[I]$ ищет столбец $p(j)$ в $F_l[S]$, такой что евклидово расстояние между патчем $F_l[I]$ с центром $j$ и патчем $F_l[S]$ с центром $p(j)$ минимально (метод ближайшего соседа).
fun $IndependentMapping$( $F[I]$,// Выходы слоёв после входного изображения $Mask$,// Маска $F[S]$// Выходы слоёв после стилевого изображения ): // Для всех слоёв от $1$ до $L$ for $l \in [1 : L]$: // Для всех столбцов от $1$ до $M_l$ for $j \in [1 : M_l]$: // Рассматриваем патчи только внутри маски, которую нужно масштабировать в соответсвии с размером слоя $l$ if $j \in Resize(Mask, l)$: // Берём самый похожий стилевой патч и записываем его в маппинг. $P_l(j) \leftarrow NearestNeighborIndex(F[I], j, F[S])$ return $P$
В первом проходе используется модифицированная функция потерь $\mathcal{L}_{Gatys}$, с тем лишь отличием, что в $\mathcal{L}^{\beta}_{style}$ к $F_l[S]$ применяется стилевой маппинг $P_l$.
$$\mathcal{L}_1(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{style}(S, O, P) \text{, где } w_{style} \text{ — вес стилевой функции потерь.}$$
Замечание: при посчёте градиента $\mathcal{L}^{\alpha}_{content}$ используются только пиксели внутри маски[12].
Второй проход
Второй проход делает более качественную гармонизацию после первого прохода. Здесь мы будем использовать более сложный алгоритм $ConsistentMapping$ построения стилевого маппинга и более сложную функцию потерь. Суть этого алгоритма в том, чтобы найти стилевой мапинг на некотором слое $l_{ref}$ и перенести этот маппинг на остальные слои. Также, мы будем предпочитать маппинги, в которых смежные патчи в $F_l[S]$ остаются смежными после мапинга, чтобы обеспечить пространсвенную согласованность (таким образом мы хотим переносить сложные текстуры более качественно, например, мазки кистью).
fun $ConsistentMapping$( $F[I]$,// Выходы слоёв после входного изображения $Mask$,// Маска $F[S]$// Выходы слоёв после стилевого изображения ): // Сначала посчитаем маппинг как в IndependentMapping только для слоя $l_{ref}$ for $j \in [1 : M_{l_{ref}}]$: if $j \in Resize(Mask, l_{ref})$: $P_0(j) \leftarrow NearestNeighborIndex(F[I], j, F[S])$ // Далее обеспечиваем пространсвенную согласованность for $j \in [1 : M_{l_{ref}}]$: if $j \in Resize(Mask, l_{ref})$: $q \leftarrow P_0(j)$ // Инициализируем множество кандидатов на новый маппинг $CSet \leftarrow \{q\}$ // Перебираем все смежные патчи for $o \in \left\{N, NE, E, SE, S, SW, W, NW\right\}$: // Добавляем в кандидаты патч, сосед которого является маппингом для нашего соседа в соответсвующем направлении $CSet \leftarrow CSet \cup \left\{P_0(j + o) - o\right\}$ // Среди всех кандидатов выбираем тот, который ближе всего к маппингам наших соседей $P_{l_{ref}}(j) \leftarrow \underset{c \in CSet}{\mathrm{argmin}}\displaystyle\sum_o \left\|(F_{l_{ref}}[S]_c - F_{l_{ref}}[S]_{P_0(j + o)}\right\|^2$ // Теперь нужно перенести маппинг для $l_{ref}$ на остальные слои for $l \in [1 : L] \setminus \{l_{ref}\}$: for $j \in [1 : M_l]$: if $j \in Resize(Mask, l)$: // Вычисляем позицию $j'$ на слое $l_{ref}$ соответствующую позиции $j$ на слое $l$ $j' \leftarrow ChangeResolution(l, l_{ref}, j)$ // Берём маппинг для позиции $j'$ $q \leftarrow P_{l_{ref}}(j')$ // Переносим позицию $q$ обратно на слой $l$ $P_l(j) \leftarrow ChangeResolution(l_{ref}, l, q)$ return $P$
При вычислении стилевого маппинга появляется очень много дублирующихся векторов, что даёт не очень хорошие результаты. Поэтому при вычислении матрицы Грама выкинем повторяющиеся векторы. Назовём эту функцию потерь $\mathcal{L}_{s1}$.
$$\mathcal{L}_2(I, S, O, P) = \mathcal{L}^{\alpha}_{content}(I, O) + w_{style}\mathcal{L}^{\beta}_{s1}(S, O, P) + w_{hist}\mathcal{L}^{\gamma}_{hist}(S, O) + w_{tv}\mathcal{L}_{tv}(O) \text{, где } w_{style}, w_{hist}, w_{tv} \text{ — веса соответсвующих функций потерь.}$$
Только второй проход | Только первый проход | Результат с $\mathcal{L}_{style}$ вместо $\mathcal{L}_{s1}$ |
---|---|---|
Итоговый алгоритм
Теперь осталось запустить две стадии:
fun $Harmonization$( $I$,// Входное изображение $Mask$,// Маска $S$// Стилевое изображение ): // Грубый проход алгоритма. Каждый слой рассматривается отдельно при построении стилевого маппинга. $I' \leftarrow SinglePassHarmonization(I, Mask, S, IndependentMapping, \mathcal{L}_1)$ // Улучшение результата. Стилевой маппинг строится консистентно для всех слоёв. $O \leftarrow SinglePassHarmonization(I', Mask, S, ConsistentMapping, \mathcal{L}_2)$ return $O$
Постобработка
Описанный алгоритм даёт хорошие результаты в целом, но при ближайшем рассмотрении могут быть артефакты. Поэтому сделаем двухступенчатую постобработку (подробное описание есть в оригинальной статье[10]):
- Переведём изображение в CIELAB и применим Guided filter для a и b каналов.
- С помощью алгоритма PatchMatch[13] и того же Guided filter делаем так, чтобы все патчи выходного изображения присутсвовали в стилевом (чтобы не было новых объектов или структур).
Подбор гиперпараметров
Возьмём $l_{ref}$ = conv4_1. Выберем следующие веса для слоёв:
Параметр | conv1_1 | conv2_1 | conv3_1 | conv4_1 | conv5_1 |
---|---|---|---|---|---|
$\alpha$ | $0$ | $0$ | $0$ | $1$ | $0$ |
$\beta$ | $0$ | $0$ | $1/3$ | $1/3$ | $1/3$ |
Параметр | conv1_1 | conv2_1 | conv3_1 | conv4_1 | conv5_1 |
---|---|---|---|---|---|
$\alpha$ | $0$ | $0$ | $0$ | $1$ | $0$ |
$\beta$ | $1/4$ | $1/4$ | $1/4$ | $1/4$ | $0$ |
$\gamma$ | $1/2$ | $0$ | $0$ | $1/2$ | $0$ |
Введём гиперпараметр $\tau$ и возьмём $w_{style} = w_{hist} = \tau$, $w_{tv} = \tau\frac{10}{1 + \exp(10^4 * noise(S) - 25)}$, где $noise(S) = \underset{i,j}{\mathrm{med}}\left\{\left(O^l_{i, j} - O^l_{i-1, j}\right)^2 + \left(O^l_{i, j} - O^l_{i, j-1}\right)^2\right\}$[14]
Для того чтобы подбирать $\tau$ авторы статьи использовали классификатор стилей изображений. Они взяли VGG-19, обучили её классифицировать $18$ различных стилей. Эти стили были разделены на $3$ категории с разными $\tau$. Используя $Softmax$ можно интерполировать необходимый $\tau$ по следующей таблице:
Категория стиля | Примеры стилей | $\tau$ |
---|---|---|
Слабый | Барокко, Высокое Возрождение | $1$ |
Средний | Абстрактное Искусство, Постимпрессионизм | $5$ |
Сильный | Кубизм, Экспрессионизм | $10$ |
Примеры
Исходное изображение | Простая вставка | Результат | Постобработка |
---|---|---|---|
Глубокий блендинг
Алгоритм глубокого блендинга состоит из двух этапов. На первом этапе на стилевое изображения $S$ бесшовно накладывается входное изображение $I$, получается подготовительное блендинг-изображение $B$. На втором этапе $B$ модифицируется таким образом, чтобы результат по стилю был похож на $S$.
Будем считать, что на вход подаются изображения, прошедшие предварительную обработку:
- Используемая для вставки часть $I$ вырезана с помощью маски
- $M$ и $I$ выровнены относительно $S$
- Размеры матриц, задающих $M, S, I$ совпадают
Примеры входных данных:
Стилевое изображение $S$ |
|||
---|---|---|---|
Накладываемое изображение $I$ |
На обоих этапах алгоритм минимизирует взвешенную сумму следующих функций потерь:
- Функция потерь содержания $\mathcal{L}_{cont}$ для сохранения содержания накладываемого изображения $I$
- Функция потерь стиля $\mathcal{L}_{style}$ для переноса стиля изображения $S$ на $I$
- Гистограмная функция потерь $\mathcal{L}_{hist}$ для стабилизации переноса стиля
- Функция потерь полного отклонения $\mathcal{L}_{tv}$ для удаления шумов
- Градиентная функция потерь $\mathcal{L}_{grad}$ для бесшовности наложения
Для подсчета $\mathcal{L}_{style}$ и $\mathcal{L}_{content}$ авторами статьи[15] использовалась сеть VGG-19[3], обученная на ImageNet[16].
Определение: |
Простой вставкой (англ. copy and paste) $CAP(M, S, I)$ будем назвать изображение, полученное наложением части изображения $I$, заданной маской $M$, на изображение $S$. $CAP(M, S, I) = I \odot M + S \odot (1 - M)$, где $\odot$ — покомпонентное умножение. |
Определение: |
Дискретный оператор Лапласа (фильтр Лапласа) $\mathbf{D}^2$ — аналог непрерывного оператора Лапласа $\nabla^2$, который позволяет выделять контуры изображения. $$\mathbf{D}^2=\begin{bmatrix}0 & 1 & 0\\1 & -4 & 1\\0 & 1 & 0\end{bmatrix}.$$ |
Исходное изображение | Применение фильтра Лапласа |
---|---|
Чтобы комбинировать решение задачи бесшовного наложения методом Пуассона с остальными ограничениями, авторы статьи[15] предлагают использовать функцию потерь $\mathcal{L}_{grad}$. Для сохранения контуров изображений $S$ и $I$ в области вставки используется дискретный оператор Лапласа.
Определение: |
$\mathcal{L}_{grad}(S, I, M, O) = \displaystyle\frac{1}{2HW}\displaystyle\sum_{m=1}^H \displaystyle\sum_{n=1}^W \left[ \mathbf{D}^2 B - \left(\mathbf{D}^2 S + \mathbf{D}^2 I\right) \right]^2_{mn}$ — градиентная функция потерь (англ. Possion gradient loss). $H, W$ — высота и ширина изображений. $B = CAP(M, S, O)$ — блендинговое изображение, оптимизируемое относительно $O$. |
Рассмотрим область $\overline{\Omega} = \{\;p \;| \;M_p = 0\; \}$. Заметим, что градиент $I$ в $\overline{\Omega}$ равен нулю. Тогда градиенты $S$ и $B$ совпадают, и задача минимизации $\mathcal{L}_{grad}$ решается только в области вставки.
Первый этап
На первом этапе изображение $I$ накладывается на фоновое изображение $S$ таким образом, чтобы были незаметны швы. Построение начинается с белого шума $Z$, который оптимизируется в области вставки путем минимизации суммарной функции потерь $\mathcal{L}_{total}$, представленной взвешенной суммой всех функций потерь, описанных выше: $$ \mathcal{L}_{total}(Z) = w_{grad}\mathcal{L}_{grad}(I, S, B) + w_{cont}\mathcal{L}_{cont}(I, M, Z) + w_{style}\mathcal{L}_{style}(S, B) + w_{tv}\mathcal{L}_{tv}(B) + w_{hist}\mathcal{L}_{hist}(S, B).$$ Отметим, что $\mathcal{L}_{cont}$ зависит от маски и отвечает за сохранение содержания $I$ в области вставки.
Отличительной чертой этого этапа является использование функции потерь $\mathcal{L}_{grad}$, приближающей градиент результата к градиенту $I$ в области наложения, за счет чего достигается бесшовность.
В результате получается подготовительное блендинг-изображение $B$.
fun $SeamlessBlending$( $I$, // Входное изображение $M$, // Маска $S$ // Стилевое изображение ): // Инициализируем первое приближение белым шумом $Z \leftarrow RandomNoise() $ $B \leftarrow CAP(M, S, Z)$ // Определим суммарную функцию потерь с весами слагаемых $w$ $\mathcal{L}_{total}(Z) \leftarrow w_{grad}\mathcal{L}_{grad}(I, S, B) + w_{cont}\mathcal{L}_{cont}(I, M, Z) + w_{style}\mathcal{L}_{style}(S, B) + w_{tv}\mathcal{L}_{tv}(B) + w_{hist}\mathcal{L}_{hist}(S, B)$ // С помощью алгоритма L-BFGS ищем изображение $Z$, которое минимизирует $\mathcal{L}_{total}$ $Z \leftarrow Reconstruct(\mathcal{L}_{total}, Z)$ return $CAP(M, S, Z)$
Второй этап
Второй этап алгоритма представляет собой модификацию полученного на первом этапе блендинг-изображения $B$ таким образом, чтобы стиль изображения был наиболее близок к стилю $S$.
В отличие от предыдущего этапа, функция потерь не включает в себя $\mathcal{L}_{grad}$: $$\mathcal{L}_{total}(O) = w_{cont}\mathcal{L}_{cont}(B, O) + w_{style}\mathcal{L}_{style}(S, O) + w_{tv}\mathcal{L}_{tv}(O) + w_{hist}\mathcal{L}_{hist}(S, O).$$
Минимизация происходит относительно результата алгоритма $O$, который инициализируется изображением $B$.
fun $StyleRefinement$( $B$, // Подготовительное блендинг-изображение, результат первого этапа $M$, // Маска $S$ // Стилевое изображение ): $O \leftarrow B$ // Определим суммарную функцию потерь с весами слагаемых $w$ $\mathcal{L}_{total}(O) \leftarrow w_{cont}\mathcal{L}_{cont}(B, O) + w_{style}\mathcal{L}_{style}(S, O) + w_{tv}\mathcal{L}_{tv}(O) + w_{hist}\mathcal{L}_{hist}(S, O)$ // С помощью алгоритма L-BFGS ищем изображение $O$, которое минимизирует $\mathcal{L}_{total}$ $O \leftarrow Reconstruct(\mathcal{L}_{total}, O)$ return $O$
После первого этапа | После обоих этапов |
---|---|
Детали реализации
Этап | $w_{grad}$ | $w_{cont}$ | $w_{style}$ | $w_{hist}$ | $w_{tv}$ |
---|---|---|---|---|---|
$1$ | $10^5$ | $1$ | $10^5$ | $1$ | $10^{-6}$ |
$2$ | $0$ | $1$ | $10^7$ | $1$ | $10^{-6}$ |
Для подсчета $\mathcal{L}_{style}$ используются слои conv1_2, conv2_2, conv3_3, conv4_3 $VGG$, для $\mathcal{L}_{cont}$ — conv2_2.
На обоих этапах максимальное количество итераций алгоритма L-BFGS — $1000$.
Примеры
См. также
Примечания
- ↑ Poisson Image Editing Patrick Perez, Michel Gangnet, Andrew Blake (2003)
- ↑ https://erkaman.github.io/posts/poisson_blending.html Poisson blending для самых маленьких
- ↑ 3,0 3,1 Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan, Andrew Zisserman (2014)
- ↑ 4,0 4,1 Image Style Transfer Using Convolutional Neural Networks Leon A. Gatys, Alexander S. Ecker, Matthias Bethge (2016)
- ↑ 5,0 5,1 5,2 Здесь используется определение функции потерь, которое отличается от статьи Гатиса, но используется в таком виде в статье про гармонизацию.
- ↑ 6,0 6,1 Stable and Controllable Neural Texture Synthesis and Style Transfer Using Histogram Losses Eric Risser, Pierre Wilmot, Connelly Barnes (2017)
- ↑ https://en.wikipedia.org/wiki/Histogram_matching
- ↑ Understanding Deep Image Representations by Inverting Them Aravindh Mahendran, Andrea Vedaldi (2015)
- ↑ 9,0 9,1 Perceptual Losses for Real-Time Style Transfer and Super-Resolution Justin Johnson, Alexandre Alahi, Li Fei-Fei (2016)
- ↑ 10,0 10,1 10,2 https://arxiv.org/pdf/1804.03189.pdf Fujun Luan, Sylvain Paris, Eli Shechtman, Kavita Bala (2018)
- ↑ Visual Attribute Transfer through Deep Image Analogy Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, Sing Bing Kang (2017)
- ↑ https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_gram.lua#L349
- ↑ https://www.researchgate.net/profile/Eli_Shechtman/publication/220184392_PatchMatch_A_Randomized_Correspondence_Algorithm_for_Structural_Image_Editing/links/02e7e520897b12bf0f000000.pdf Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman (2009)
- ↑ [https://github.com/luanfujun/deep-painterly-harmonization/blob/a33a9a70366b6baff1cc0291f857b5895b271fc1/neural_paint.lua#L470 код функции $noise$.
- ↑ 15,0 15,1 Deep Image Blending Lingzhi Zhang, Tarmily Wen, Jianbo Shi (2020)
- ↑ https://image-net.org/papers/imagenet_cvpr09.pdf J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A large-scale hierarchical image database