Участник:Masha — различия между версиями
Masha (обсуждение | вклад) (→Формула Бержа) (Метки: правка с мобильного устройства, правка из мобильной версии) |
(→Формула Бержа) |
||
Строка 23: | Строка 23: | ||
1) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = 0 </tex>, тогда <tex>\forall \; S \in \; V: \; odd(G \setminus S) \leq |S| \; </tex> и выполнен критерий Татта, значит, в графе есть совершенное паросочетание, т.е. его дефицит равен нулю. | 1) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = 0 </tex>, тогда <tex>\forall \; S \in \; V: \; odd(G \setminus S) \leq |S| \; </tex> и выполнен критерий Татта, значит, в графе есть совершенное паросочетание, т.е. его дефицит равен нулю. | ||
− | 2) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами | + | 2) Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, множество вершин нового графа обозначим как <tex>W</tex>. Каждую вершину вспомогательного графа соединим с каждой вершиной <tex>G</tex>. Получим новый граф <tex>H \; = \; K_k + G</tex>, докажем, что для него выполнено условие Татта. Докажем, что <tex>\forall S \in V_{H}: odd(G \setminus S) -leq |S| </tex>. Рассмотрим S \from V_H. Если в не <tex>W \in S</tex>, тогда посколько граф <tex>K_k</tex> полный, и все его вершины связаны с каждой вершиной графа <tex>G</tex>, то граф <tex>H</tex> связный и <tex>odd(G \setminus S) = 0</tex> или <tex>odd(G \setminus S) = 1</tex>. В случае <tex>odd(G \setminus S) = 0</tex> условие очевидно выполняется т.к <tex>\forall S \in G : 0 \; \leq \; |S|</tex>. В случае |
}} | }} | ||
+ | |||
+ | |||
+ | ==Источники информации== | ||
+ | |||
+ | [https://www.youtube.com/watch?v=1KggxCJZFRg {{---}} Лекция А.С. Станкевича] |
Версия 14:00, 6 июня 2021
Формула Бержа
Лемма: |
, где - граф с вершинами, |
Доказательство: |
Удалим из графа В сумме множество , получим компонент связности, содержащих вершин соответсвенно. т. к в сумме это все вершины исходного графа . Возьмем данное равенство по модулю два: число единиц равно числу нечетных компонент . Таким образом, . |
Теорема: |
Доказательство: |
|