Участник:Masha — различия между версиями
Masha (обсуждение | вклад) (→Формула Бержа) |
Masha (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
== Формула Бержа == | == Формула Бержа == | ||
+ | |||
+ | {{Определение | ||
+ | |id = odd | ||
+ | |definition =<tex>\mathrm{odd}({G})</tex> {{---}} число нечетных компонент связности в графе <tex>{G}</tex>, где '''нечетная компонента''' (англ. ''odd component'') {{---}} это [[Отношение связности, компоненты связности#def2|компонента связности]], содержащая нечетное число вершин. | ||
+ | }} | ||
+ | |||
+ | |||
{{Лемма | {{Лемма | ||
Строка 5: | Строка 12: | ||
|proof= | |proof= | ||
Удалим из графа <tex>G</tex> множество <tex>S</tex>, получим <tex>t</tex> компонент связности, содержащих <tex>k_1, k_2 ... k_t</tex> вершин соответственно. | Удалим из графа <tex>G</tex> множество <tex>S</tex>, получим <tex>t</tex> компонент связности, содержащих <tex>k_1, k_2 ... k_t</tex> вершин соответственно. | ||
− | <tex>|S|\; + \; \sum_{i=1}^{k}k_i \; = \; n \; </tex>, | + | <tex>|S|\; + \; \sum_{i=1}^{k}k_i \; = \; n \; </tex>, так как в сумме это все вершины исходного графа <tex>G</tex>. |
Возьмем данное равенство по модулю два: <tex>(|S|\; mod\; 2 \; + \; \sum_{i=1}^{k}(k_i \; mod \; 2)) \; mod \; 2 = n \; mod \; 2</tex> | Возьмем данное равенство по модулю два: <tex>(|S|\; mod\; 2 \; + \; \sum_{i=1}^{k}(k_i \; mod \; 2)) \; mod \; 2 = n \; mod \; 2</tex> | ||
− | В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \; 2 \; | + | В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \; 2 \; \equiv \; n \; (mod \; 2) \;</tex>. |
}} | }} | ||
Строка 15: | Строка 22: | ||
|statement= <tex>def G = \max\limits_{S \in V} (odd(G \setminus S) - |S|)</tex> | |statement= <tex>def G = \max\limits_{S \in V} (odd(G \setminus S) - |S|)</tex> | ||
|proof= | |proof= | ||
− | <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \; 2 | + | <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; mod \; 2 \; \equiv \; n (\; mod \; 2) \;</tex> |
Версия 08:13, 11 июня 2021
Формула Бержа
Определение: |
компонента связности, содержащая нечетное число вершин. | — число нечетных компонент связности в графе , где нечетная компонента (англ. odd component) — это
Лемма: |
, где - граф с вершинами, |
Доказательство: |
Удалим из графа В сумме множество , получим компонент связности, содержащих вершин соответственно. , так как в сумме это все вершины исходного графа . Возьмем данное равенство по модулю два: число единиц равно числу нечетных компонент . Таким образом, . |
Теорема: |
Доказательство: |
2) Если , тогда рассмотрим исходный граф и полный граф с вершинами, множество вершин нового графа обозначим как . Каждую вершину вспомогательного графа соединим с каждой вершиной . Получим новый граф , докажем, что для него выполнено условие Татта. Докажем, что . Рассмотрим .Если , тогда поскольку граф полный и все его вершины связаны с каждой вершиной графа , то граф связный и или . В случае условие очевидно выполняется т.к . Рассмотрим случай , , где . Разность имеет ту же четность, что и , поэтому четно, значит, по лемме, мощность нечетна, следовательно она не равна нулю, значит .Если , то т.к. .Таким образом, для графа Из выполнено условие Татта, следовательно в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе , удалим вершины из графа . Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин , значит . Удалим множество вершин из графа . Заметим, что после удаления в графе осталось нечетных компонент и образовались новые непокрытые вершины, но при этом число нечетных компонент больше числа удаленных на . Значит хотя бы нечетных компонент содержали исходно непокрытую вершину, следовательно . и следует . |