9
правок
Изменения
Нет описания правки
{{Определение
|definition=
Пусть даны отношения <tex>A</tex> с заголовком <tex>X \cup Y</tex> и отношение <tex>B</tex> с заголовком <tex>Y \cup Z \,\,\,\, (X \cap Z = \varnothing)</tex>. Тогда '''большим делением''' (англ. ''Great division'') <tex>A</tex> на <tex>B</tex> называется максимальное по включению отношение с заголовком <tex>X \cup Z</tex>, такое что для каждого <tex>(x, z) \in X \cup times Z</tex> верно <tex>\{x\} \times \pi_Y(\sigma_{Z=z}(B)) \subseteq A</tex>. Обозначение: <tex>A ⋇ B</tex>
}}
===Пример===
|Иван
|Иванов
|-
|Иван
|Петров
|-
|Пётр
|Иванов
|-
|ИванПётр
|Петров
|-
|Пётр
|ПетровСидоров
|-
|Сидор
|Петров
|-
|Сидор
|Сидоров
|}
''Объяснение:.''Чтобы найти результат большого деления, переберём всевозможные <tex>(x, z) \in X \times Z</tex>. В нашем случае <tex>X = \{(Иван), (Пётр), (Сидор)\}, Z = \{(Иванов), (Петров), (Сидоров)\}</tex>. Возьмём <tex>(x, z) = (Иван, Иванов)</tex>. Тогда <tex>\pi_Y(\sigma_{Z=Иванов}(B)) = \{(1), (2)\}</tex>. Тогда <tex>\{Иван\} \times \pi_Y(\sigma_{Z=Иванов}(B)) = \{(1, Иван), (2, Иван)\}</tex>, что является подмножеством <tex>A</tex>. Значит, <tex>(Иван, Иванов)</tex> есть в результате большого деления.
===Свойства===