Soft-Max и Soft-Arg-Max — различия между версиями
Строка 1: | Строка 1: | ||
− | Soft-Max и Soft-Arg-Max. Пусть есть задача мягкой классификации: Алгоритм выдает значения L1, L2, ... Ln, где n - число классов. Li - уверенность алгоритма в том, что объект принадлежит классу i; -oo <=Li <= +oo. | + | Soft-Max и Soft-Arg-Max. |
+ | ===Soft-Arg-Max=== | ||
+ | Пусть есть задача мягкой классификации: Алгоритм выдает значения L1, L2, ... Ln, где n - число классов. Li - уверенность алгоритма в том, что объект принадлежит классу i; -oo <=Li <= +oo. | ||
Нужно для этих значений найти такие p1,...pn, что pi из [0, 1], а сумма pi = 1, то есть p1..pn - распределение вероятностей. | Нужно для этих значений найти такие p1,...pn, что pi из [0, 1], а сумма pi = 1, то есть p1..pn - распределение вероятностей. | ||
Для этого возьмём экспоненту от L1..Ln; Получим числа от [0;+oo] и нормируем их: | Для этого возьмём экспоненту от L1..Ln; Получим числа от [0;+oo] и нормируем их: |
Версия 15:56, 1 июля 2022
Soft-Max и Soft-Arg-Max.
Soft-Arg-Max
Пусть есть задача мягкой классификации: Алгоритм выдает значения L1, L2, ... Ln, где n - число классов. Li - уверенность алгоритма в том, что объект принадлежит классу i; -oo <=Li <= +oo. Нужно для этих значений найти такие p1,...pn, что pi из [0, 1], а сумма pi = 1, то есть p1..pn - распределение вероятностей. Для этого возьмём экспоненту от L1..Ln; Получим числа от [0;+oo] и нормируем их: pi = exp(Li)/Sum(exp(Li)) Выполняется следующее: Li <= Lj => Pi <= Pj
Есть модель a, возвращающая Li. Необходимо сделать так, чтобы a возвращала pi, при этом оставаясь дифференциируемой.
soft-arg-max , где