NL-полнота задачи о достижимости в графе — различия между версиями
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
== Формулировка задачи== | == Формулировка задачи== | ||
Даны ориентированный граф <tex> G = \langle V, E \rangle </tex> и две вершины <tex> s, t</tex> в нем. Необходимо проверить, правда ли, что в графе <tex> G </tex> существует путь из вершины <tex> s </tex> в вершину <tex> t </tex>. Эту задачу принято называть <tex> st-connectivity </tex> или <tex> STCON </tex>. | Даны ориентированный граф <tex> G = \langle V, E \rangle </tex> и две вершины <tex> s, t</tex> в нем. Необходимо проверить, правда ли, что в графе <tex> G </tex> существует путь из вершины <tex> s </tex> в вершину <tex> t </tex>. Эту задачу принято называть <tex> st-connectivity </tex> или <tex> STCON </tex>. |
Версия 07:40, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Формулировка задачи
Даны ориентированный граф
и две вершины в нем. Необходимо проверить, правда ли, что в графе существует путь из вершины в вершину . Эту задачу принято называть или .Теорема
Задача NL-полна.
Доказательство
Для доказательства NL-полноты необходимо показать, что эта задача NL-трудная и принадлежит классу NL.
Доказательство принадлежности задачи STCON классу NL
Для доказательства необходимо предъявить алгоритм для недетерминированной машины Тьюринга, который использует конечное число переменных, каждая из которых занимает
памяти, где - размер входа для задачи и за время порядка решает эту задачу.Алгоритм:
1. Начиная с вершины
недетерминированно переходит в одну из вершин, смежных с ней. (Очевидно, для этого необходимо конечное число переменных)2. Проверяет, правда ли, что текущая вершина совпадает с
. Если это так, возвращает TRUE.3. Отдельно считает количество пройденных вершин. Как только это число превышает количество вершин в графе, то алгоритм возвращает FALSE, так как посетил некоторую вершину дважды.
Таким образом в каждый момент алгоритму достаточно хранить текущую вершину, количество посещенных вершин, финальную вершину
и некоторое число вспомогательных переменных, для совершения переходов. Все эти переменные принимают значения не более, чем максимальный номер вершины, то есть как раз занимают памяти.Доказательство NL-трудности задачи STCON
Необходимо показать, что любая задача из класса NL сводится к задаче STCON с использованием не более, чем логарифмической памяти.
Необходимо по данной задаче из NL построить тройку , решение задачи STCON для которой будет эквивалентно решению данной задачи.
Любая машина Тьюринга, которая принимает некоторый язык L из NL использует не более, чем логарифмическое количество ячеек на рабочей ленте и таким образом возможных мгновенных описаний этой машины Тьюринга . Мгновенным описанием машины Тьюринга считается ее внутреннее состояние, позиция головки на ленте и содержимое рабочей ленты. Каждому возможному мгновенному описанию машины Тьюринга будет соответствовать некоторая вершина в , а каждому переходу из этого описания в другое (которых в недетерминированной машине Тьюринга не более, чем некоторое конечное число), ребро в графе . За вершину принимается вершина, соответствующая начальному состоянию машины, а из каждой вершины, соответствующей некоторому допускающему состоянию, добавляется переход в выделенную вершину .
Очевидно, что для любого слова, из языка L, то есть принимаемого данной машиной Тьюринга, будет существовать путь из в в построенном графе . А, если для некоторого слова не из L в существует путь из в , то он соответствует некоторой корректной последовательности переходов в изначальной машине, таким образом слово должно было приниматься этой недетерминированной машиной.
Такое построение графа
по данной машине Тьюринга можно выполнить с использованием конечного числа переменных, которые будут перебирать всевозможные мгновенные состояния машины (их , потому переменная, перебирающая его занимает памяти), переходы из него и проверка возможности перехода.