Многопоточная сортировка слиянием — различия между версиями
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
== Многопоточная сортировка слиянием == | == Многопоточная сортировка слиянием == | ||
Благодаря тому, что [[Сортировка слиянием | сортировка слиянием]] построена на принципе "Разделяй и властвуй", выполнение данного алгоритма можно весьма эффективно распараллелить. При оценке асимптотики допускается, что возможен запуск неограниченного количества независимых процессов, т.е. процессов с вычислительными ресурсами, не зависящими от других процессов, что на практике не достижимо. Более того, при реализации имеет смысл ограничить количество параллельных потоков. | Благодаря тому, что [[Сортировка слиянием | сортировка слиянием]] построена на принципе "Разделяй и властвуй", выполнение данного алгоритма можно весьма эффективно распараллелить. При оценке асимптотики допускается, что возможен запуск неограниченного количества независимых процессов, т.е. процессов с вычислительными ресурсами, не зависящими от других процессов, что на практике не достижимо. Более того, при реализации имеет смысл ограничить количество параллельных потоков. |
Версия 07:51, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Многопоточная сортировка слиянием
Благодаря тому, что сортировка слиянием построена на принципе "Разделяй и властвуй", выполнение данного алгоритма можно весьма эффективно распараллелить. При оценке асимптотики допускается, что возможен запуск неограниченного количества независимых процессов, т.е. процессов с вычислительными ресурсами, не зависящими от других процессов, что на практике не достижимо. Более того, при реализации имеет смысл ограничить количество параллельных потоков.
Сортировка с однопоточным слиянием
Внесем в алгоритм сортировки слиянием следующую модификацию: будем сортировать левую и правую части массива параллельно.
function mergeSortMT(array, left, right): mid = (left + right) / 2 spawn mergeSortMT(array, left, mid) mergeSortMT(array, mid + 1, right) sync merge(array, left, mid, right)
В данном алгоритме оператор слияние двух массивов.
Несмотря на наличие двух рекурсивных вызовов, при оценке будем считать, что совершается один вызов, т.к. оба вызова выполняются параллельно с одинаковой асимптотикой. Оценим время работы данного алгоритма: . Данная асимптотика достигается при возможности запускать неограниченное количество потоков независимо друг от друга.
Многопоточное слияние
Как видно из оценки первого алгоритма, слияние является его узким местом. Попытаемся распараллелить слияние, для чего рассмотрим алгоритм рекурсивного слияния массивов
и в массив :- Убедимся, что размер больше либо равен размеру
- Возьмем — середину первого массива ( также является и медианой этого массива)
- При помощи бинарного поиска найдем такое, что
- Сольем и в
- Сольем и в
Алгоритм показан на рисунке:
Реализация
// есливозвращает // если , возвращает // иначе возвращает наибольший индекс из отрезка такой, что integer binarySearch(x, array, left, right) // слияние и в function mergeMT(T, left , right , left , right , A, left ): n = right - left + 1 n = right - left + 1 if n < n swap(left , left ) swap(right , right ) swap(n , n ) if n == 0 return else mid = (left + right ) / 2 mid = binarySearch(T[mid ], T, left , right ) mid = left + (mid - left ) + (mid - left ) A[mid ] = T[mid ] spawn mergeMT(T, left , mid - 1, left , mid - 1, A, left ) mergeMT(T, mid + 1, right , mid , right , A, mid + 1) sync
Оба массива содержат
.
В худшем случае один из двух рекурсивных вызовов сольет элементов с элементами и тогда количество элементов первых двух массивов в рекурсивном вызове будет равно
.
Асимптотика каждого вызова функции — , т.е. время, затрачиваемое на бинарный поиск. Так как рекурсивные вызовы функции выполняются параллельно, а потоки при оценке независимы, время их выполнения будет равно времени выполнения самого долгого вызова. В худшем случае это . Тогда получим оценку сверху
Сортировка с многопоточным слиянием
Приведем псевдокод алгоритма, использующего слияние из предыдущего раздела, сортирующего элементы
и помещающего отсортированный массив в function mergeSortMT2(A, leftA, rightA, B, leftB):
n = r - p + 1
if n == 1
B[leftB] = A[leftA]
else
создадим новый массив T[1
n]
mid = (leftA + rightA) / 2
newMid = mid - leftA + 1
spawn mergeSortMT2(A, leftA, mid, T, 1)
mergeSortMT2(A, mid + 1, rightA, T, newMid + 1)
sync
mergeMT(T, 1, newMid, newMid + 1, n, B, leftB)
Оценим данный алгоритм сверху при условии, что возможен запуск неограниченного количества независимых потоков. Из предыдущих пунктов
.Оценка при фиксированном числе потоков
Понятно, что при отсутствии возможности запуска неограниченного количества независимых потоков, вычислительная сложность многопоточного алгоритма зависит от максимально возможного количества независимых потоков. Обозначим такое количество как
- Сортировка с однопоточным слиянием будет иметь асимптотику :
- операций нужно на последовательную сортировку массива длиной .
- необходимо на последовательное слияние.
- Многопоточное слияние будет работать за :
- Прежде чем достигнуть ограничения на создание нового потока, алгоритм углубится на уровней вглубь дерева рекурсии, где на каждом уровне выполняется бинпоиск за
- Асимптотика многопоточного слияния при работе в одном потоке по основной теореме рекуррентных соотношений равна
- Оценим сортировку с многопоточным слиянием снизу:
- Части массива длиной гарантированно будут сортироваться последовательно, т.к. только алгоритм сортировки запустит к моменту вызова от массива длиной число потоков, равное . Тогда по основной теореме рекуррентных соотношений:
- Сортировка с однопоточным слиянием будет иметь асимптотику :
Очевидно, что нижняя оценка алгоритма сортировки с многопоточным слиянием выше. Таким образом, при приведенных выше допущениях алгоритм сортировки с однопоточным слиянием эффективнее и его асимптотика составляет
.См. также
Источники информации
- Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. — Introduction to Algorithms, Third Edition