Метод двоичного подъёма — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
{{В разработке}}
 
{{В разработке}}
Метод двоичного подъема - это один из самых простых методов для решения задачи LCA в on-line и он не использует метод решение задачи RMQ. Он основан на методе динамического программирования.
+
Метод двоичного подъема {{---}} это один из самых простых методов для решения задачи [[Сведение задачи LCA к задаче RMQ|LCA]] в on-line и он не использует метод решение задачи RMQ. Он основан на методе динамического программирования.
 
==Описание алгоритма==
 
==Описание алгоритма==
 
Как и все on-line алгоритмы, этот метод делает сначала препроцессинг, чтобы потом отвечать на запросы.
 
Как и все on-line алгоритмы, этот метод делает сначала препроцессинг, чтобы потом отвечать на запросы.
 
===Препроцессинг===
 
===Препроцессинг===
Препроцессинг заключается в том, чтобы посчитать функцию: <tex> dp[v][i] </tex> - это номер вершины, в которую мы придем если пройдем из вершины <tex> v </tex> вверх по подвешенному дереву <tex> 2 ^ i </tex> шагов, причем если мы пришли в корень, то мы там и останемся.
+
Препроцессинг заключается в том, чтобы посчитать функцию: <tex> dp[v][i] </tex> {{---}} это номер вершины, в которую мы придем если пройдем из вершины <tex> v </tex> вверх по подвешенному дереву <tex> 2 ^ i </tex> шагов, причем если мы пришли в корень, то мы там и останемся.
Для этого сначала обойдем дерево в глубину и для каждой вершины запишем номер ее родителя <tex> p[v] </tex> и глубину вершины в подвешенном дереве <tex> depth[v] </tex>. Если <tex> v </tex> - корень, то <tex> p[v] = v </tex>. Тогда для функции <tex> dp </tex> есть рекуррентная формула:
+
Для этого сначала обойдем дерево в глубину и для каждой вершины запишем номер ее родителя <tex> p[v] </tex> и глубину вершины в подвешенном дереве <tex> d[v] </tex>. Если <tex> v </tex> - корень, то <tex> p[v] = v </tex>. Тогда для функции <tex> dp </tex> есть рекуррентная формула:
  
 
<tex>dp[v][i]= \begin{cases}
 
<tex>dp[v][i]= \begin{cases}
Строка 12: Строка 12:
 
\end{cases}</tex>
 
\end{cases}</tex>
  
Для того чтобы отвечать на запросы нам нужны будут только те значения <tex> dp[v][i] </tex>, где <tex> i \le \log_2{n} </tex>, ведь при больших <tex> i </tex> значение <tex> dp[v][i] </tex> будет номером корня.
+
Для того чтобы отвечать на запросы нам нужны будут только те значения <tex> dp[v][i] </tex>, где <tex> i \le \log_2{n} </tex>, ведь при больших <tex> i </tex> значение <tex> dp[v][i] </tex> будет номером корня.
 +
 
 +
Всего состояний динамики <tex> O(n \log{n})</tex>, где <tex> n </tex> {{---}} это количество вершин в дереве. Каждое состояние считается за <tex> O(1) </tex>. Поэтому суммарная сложность времени и памяти препроцессинга {{---}} <tex> O(n \log{n}) </tex>.
  
 
===Ответы на запросы===
 
===Ответы на запросы===
 +
Ответы на запросы будут происходить за время <tex> O(\log{n})</tex>.
 +
Для ответа на запрос заметим сначала, что если <tex> c = LCA(v, u) </tex>, для некоторых <tex> v </tex> и <tex> u </tex>, то <tex> d[c] \le min(d[v], d[u])</tex>. Поэтому если <tex> d[v] < d[u] </tex>, то пройдем от вершины <tex> u </tex> на <tex> (d[u] - d[v]) </tex> шагов вверх, это и будет новое значение <tex> u </tex> и это можно сделать за <tex> O(\log{n}) </tex>.
 +
 +
Дальше считаем, что <tex> d[v] = d[u] </tex>.
 +
 +
Если <tex> v = u </tex>, то ответ на запрос <tex> v </tex>.
 +
 +
А если <tex> v \neq u </tex>, то найдем такие вершины <tex> x </tex> и <tex> y </tex>, такие что <tex> x \neq y </tex>, <tex> x </tex> {{---}} предок <tex> v </tex>, <tex> y </tex> {{---}} предок <tex> u </tex> и <tex> p[x] = p[y] </tex>. Тогда ответом на запрос будет <tex> p[x] </tex>.
 +
 +
Научимся находить эти вершины <tex> x </tex> и <tex> y </tex>. Для этого сначала инициализируем <tex> x = v </tex> и <tex> y = u </tex>. Дальше на каждом шаге находим такое максимальное <tex> k </tex>, что <tex> dp[x][k] \neq dp[y][k] </tex>. И проходим из вершин <tex> x </tex> и <tex> y </tex> на <tex> 2 ^ k </tex> шагов вверх. Если такого <tex> k </tex> найти нельзя, то значения <tex> x </tex> и <tex> y </tex>, это те самые вершины, которые нам требуется найти, ведь <tex> p[x] = dp[x][0] = dp[y][0] = p[y] </tex>.
 +
 +
Оценим время работы. Заметим, что найденные <tex> k </tex> строго убывают. Во-первых, потому что мы находим на каждом шаге максимальное значение <tex> k </tex>, а во-вторых, два раза подряд мы одно и то же <tex> k </tex> получить не можем, так как тогда получилось бы, что можно пройти <tex> 2 ^ k + 2 ^ k = 2 ^ {k + 1}</tex> шагов, а значит вместо первого <tex> k </tex>, мы бы нашли <tex> k + 1 </tex>. А значит всего <tex> O(\log{n}) </tex> значений <tex> k </tex>, их можно перебирать в порядке убывания. Сложность ответа на запрос <tex> O(\log{n}) </tex>.
 +
 +
==Псевдокод==
 +
<big><big>
 +
  preprocess()
 +
    p := dfs(0)
 +
    for i := 1 .. n
 +
      dp[i][0] := p[i]
 +
    for j := 1 .. log(n)
 +
      for i := 1 .. n
 +
        dp[i][j] := dp[dp[i][j - 1]][j - 1]
 +
 +
  lca(v, u)
 +
    if (v > u)
 +
      swap(v, u)
 +
    for i := log(n) .. 0
 +
      if (d[u] - d[v] >= <tex> 2 ^ i </tex>)
 +
        u := dp[u][i]
 +
    if (v = u)
 +
      return v
 +
    for i := log(n) .. 0
 +
      if (dp[v][i] <> dp[u][i])
 +
        v := dp[v][i]
 +
        u := dp[u][i]
 +
    return p[v]
 +
</big></big>

Версия 07:30, 7 мая 2011

Эта статья находится в разработке!

Метод двоичного подъема — это один из самых простых методов для решения задачи LCA в on-line и он не использует метод решение задачи RMQ. Он основан на методе динамического программирования.

Описание алгоритма

Как и все on-line алгоритмы, этот метод делает сначала препроцессинг, чтобы потом отвечать на запросы.

Препроцессинг

Препроцессинг заключается в том, чтобы посчитать функцию: [math] dp[v][i] [/math] — это номер вершины, в которую мы придем если пройдем из вершины [math] v [/math] вверх по подвешенному дереву [math] 2 ^ i [/math] шагов, причем если мы пришли в корень, то мы там и останемся. Для этого сначала обойдем дерево в глубину и для каждой вершины запишем номер ее родителя [math] p[v] [/math] и глубину вершины в подвешенном дереве [math] d[v] [/math]. Если [math] v [/math] - корень, то [math] p[v] = v [/math]. Тогда для функции [math] dp [/math] есть рекуррентная формула:

[math]dp[v][i]= \begin{cases} p[v] & i = 0,\\ dp[dp[v][i - 1]][i - 1] & i \gt 0. \end{cases}[/math]

Для того чтобы отвечать на запросы нам нужны будут только те значения [math] dp[v][i] [/math], где [math] i \le \log_2{n} [/math], ведь при больших [math] i [/math] значение [math] dp[v][i] [/math] будет номером корня.

Всего состояний динамики [math] O(n \log{n})[/math], где [math] n [/math] — это количество вершин в дереве. Каждое состояние считается за [math] O(1) [/math]. Поэтому суммарная сложность времени и памяти препроцессинга — [math] O(n \log{n}) [/math].

Ответы на запросы

Ответы на запросы будут происходить за время [math] O(\log{n})[/math]. Для ответа на запрос заметим сначала, что если [math] c = LCA(v, u) [/math], для некоторых [math] v [/math] и [math] u [/math], то [math] d[c] \le min(d[v], d[u])[/math]. Поэтому если [math] d[v] \lt d[u] [/math], то пройдем от вершины [math] u [/math] на [math] (d[u] - d[v]) [/math] шагов вверх, это и будет новое значение [math] u [/math] и это можно сделать за [math] O(\log{n}) [/math].

Дальше считаем, что [math] d[v] = d[u] [/math].

Если [math] v = u [/math], то ответ на запрос [math] v [/math].

А если [math] v \neq u [/math], то найдем такие вершины [math] x [/math] и [math] y [/math], такие что [math] x \neq y [/math], [math] x [/math] — предок [math] v [/math], [math] y [/math] — предок [math] u [/math] и [math] p[x] = p[y] [/math]. Тогда ответом на запрос будет [math] p[x] [/math].

Научимся находить эти вершины [math] x [/math] и [math] y [/math]. Для этого сначала инициализируем [math] x = v [/math] и [math] y = u [/math]. Дальше на каждом шаге находим такое максимальное [math] k [/math], что [math] dp[x][k] \neq dp[y][k] [/math]. И проходим из вершин [math] x [/math] и [math] y [/math] на [math] 2 ^ k [/math] шагов вверх. Если такого [math] k [/math] найти нельзя, то значения [math] x [/math] и [math] y [/math], это те самые вершины, которые нам требуется найти, ведь [math] p[x] = dp[x][0] = dp[y][0] = p[y] [/math].

Оценим время работы. Заметим, что найденные [math] k [/math] строго убывают. Во-первых, потому что мы находим на каждом шаге максимальное значение [math] k [/math], а во-вторых, два раза подряд мы одно и то же [math] k [/math] получить не можем, так как тогда получилось бы, что можно пройти [math] 2 ^ k + 2 ^ k = 2 ^ {k + 1}[/math] шагов, а значит вместо первого [math] k [/math], мы бы нашли [math] k + 1 [/math]. А значит всего [math] O(\log{n}) [/math] значений [math] k [/math], их можно перебирать в порядке убывания. Сложность ответа на запрос [math] O(\log{n}) [/math].

Псевдокод

 preprocess()
   p := dfs(0)
   for i := 1 .. n
     dp[i][0] := p[i]
   for j := 1 .. log(n)
     for i := 1 .. n
       dp[i][j] := dp[dp[i][j - 1]][j - 1]
 lca(v, u)
   if (v > u)
     swap(v, u)
   for i := log(n) .. 0
     if (d[u] - d[v] >= [math] 2 ^ i [/math])
       u := dp[u][i]
   if (v = u)
     return v
   for i := log(n) .. 0
     if (dp[v][i] <> dp[u][i])
       v := dp[v][i]
       u := dp[u][i]
   return p[v]