Рефлексивное отношение — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
[[Определение отношения|Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется ''рефлексивным'', если всякий элемент этого множества находится в отношении <tex>R</tex> с самим собой.
 
[[Определение отношения|Бинарное отношение]] <tex>R</tex> на множестве <tex>X</tex> называется ''рефлексивным'', если всякий элемент этого множества находится в отношении <tex>R</tex> с самим собой.
 
{{Определение
 
{{Определение
Строка 25: Строка 4:
 
Отношение <tex>R</tex> называется '''рефлексивным''' (англ. ''reflexive relation''), если <tex>\forall a \in X:\ (a R a)</tex>.
 
Отношение <tex>R</tex> называется '''рефлексивным''' (англ. ''reflexive relation''), если <tex>\forall a \in X:\ (a R a)</tex>.
 
}}
 
}}
Свойство рефлексивности при отношениях, заданных [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графом]], состоит в том, что каждая вершина имеет петлю — дугу <tex>(x, x)</tex>, а [[Матрица смежности графа|матрица смежности]] этого графа на главной диагонали имеет единицы.  
+
Свойство рефлексивности при отношениях, заданных [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графом]], состоит в том, что каждая вершина имеет петлю — дугу <tex>(x, x)</tex>, а [[Матрица смежности графа|матрица смежности]] этого графа на главной диагонали имеет единицы.  
  
 
Если это условие не выполнено ни для какого элемента множества <tex>X</tex>, то отношение <tex>R</tex> называется ''антирефлексивным''.
 
Если это условие не выполнено ни для какого элемента множества <tex>X</tex>, то отношение <tex>R</tex> называется ''антирефлексивным''.

Текущая версия на 19:18, 4 сентября 2022

Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется рефлексивным, если всякий элемент этого множества находится в отношении [math]R[/math] с самим собой.

Определение:
Отношение [math]R[/math] называется рефлексивным (англ. reflexive relation), если [math]\forall a \in X:\ (a R a)[/math].

Свойство рефлексивности при отношениях, заданных графом, состоит в том, что каждая вершина имеет петлю — дугу [math](x, x)[/math], а матрица смежности этого графа на главной диагонали имеет единицы.

Если это условие не выполнено ни для какого элемента множества [math]X[/math], то отношение [math]R[/math] называется антирефлексивным.


Определение:
Отношение [math]R[/math] называется антирефлексивным (англ. irreflexive relation), если [math]\forall a \in X:\ \neg (a R a)[/math].


Если антирефлексивное отношение задано графом, то ни у одной вершины не будет петли — дуги [math](x, x)[/math], а в матрице смежности на главной диагонали будут нули.

Примеры рефлексивных отношений

  • Отношения эквивалентности:
    • отношение равенства [math]=\;[/math]
    • отношение сравнимости по модулю
    • отношение параллельности прямых и плоскостей
    • отношение подобия геометрических фигур
  • Отношения частичного порядка:
    • отношение нестрогого неравенства [math]\leqslant[/math]
    • отношение нестрогого подмножества [math] \subseteq [/math]
    • отношение делимости [math]\,\vdots\,[/math]
  • Отношение "иметь одинаковый цвет волос"
  • Отношение "принадлежать одному виду"

Примеры антирефлексивных отношений

  • отношение строгого неравенства [math]\lt [/math]
  • отношение строгого подмножества [math]\subset[/math]
  • отношение "быть родителем"

См. также

Источники информации