Алгоритм Кнута-Морриса-Пратта — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
Строка 1: Строка 1:
{| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
 
|+
 
|-align="center"
 
|'''НЕТ ВОЙНЕ'''
 
|-style="font-size: 16px;"
 
|
 
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
 
 
Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
 
 
Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
 
 
Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
 
 
''Антивоенный комитет России''
 
|-style="font-size: 16px;"
 
|Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
 
|-style="font-size: 16px;"
 
|[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
 
|}
 
 
 
'''Алгоритм Кнута — Морриса — Пратта''' (англ. ''Knuth–Morris–Pratt algorithm'') — алгоритм [[Наивный алгоритм поиска подстроки в строке#Постановка задачи|поиска подстроки в строке]].
 
'''Алгоритм Кнута — Морриса — Пратта''' (англ. ''Knuth–Morris–Pratt algorithm'') — алгоритм [[Наивный алгоритм поиска подстроки в строке#Постановка задачи|поиска подстроки в строке]].
  

Текущая версия на 19:25, 4 сентября 2022

Алгоритм Кнута — Морриса — Пратта (англ. Knuth–Morris–Pratt algorithm) — алгоритм поиска подстроки в строке.

Описание алгоритма

Дана цепочка [math]T[/math] и образец [math]P[/math]. Требуется найти все позиции, начиная с которых [math]P[/math] входит в [math]T[/math].
Построим строку [math]S = P\#T[/math], где [math]\#[/math] — любой символ, не входящий в алфавит [math]P[/math] и [math]T[/math]. Посчитаем на ней значение префикс-функции [math] p [/math]. Благодаря разделительному символу [math]\#[/math], выполняется [math]\forall i: p[i] \leqslant |P|[/math]. Заметим, что по определению префикс-функции при [math]i \gt |P|[/math] и [math]p[i] = |P|[/math] подстроки длины [math]P[/math], начинающиеся с позиций [math]0[/math] и [math]i - |P| + 1[/math], совпадают. Соберем все такие позиции [math]i - |P| + 1[/math] строки [math]S[/math], вычтем из каждой позиции [math]|P| + 1[/math], это и будет ответ. Другими словами, если в какой-то позиции [math]i[/math] выполняется условие [math]p[i]=|P|[/math], то в этой позиции начинается очередное вхождение образца в цепочку.


Kmp pict2.png

Псевдокод

int[] kmp(string P, string T):
   int pl = P.length
   int tl = T.length
   int[] answer
   int[] p = prefixFunction(P + "#" + T)
   int count = 0
   for i = 0 .. tl - 1
      if p[pl + i + 1] == pl
         answer[count++] = i - pl
   return answer

Время работы

Префикс-функция от строки [math]S[/math] строится за [math]O(S) = O(P + T)[/math]. Проход цикла по строке [math]S[/math] содержит [math]O(T)[/math] итераций. Итого, время работы алгоритма оценивается как [math]O(P + T)[/math].

Оценка по памяти

Предложенная реализация имеет оценку по памяти [math]O(P+T)[/math]. Оценки [math]O(P)[/math] можно добиться за счет запоминания значений префикс-функции для позиций в [math]S[/math], меньших [math]|P| + 1[/math] (то есть до начала цепочки [math]T[/math]). Это возможно, так как значение префикс-функции не может превысить длину образца, благодаря разделительному символу [math]\#[/math].

Замечание

Вместо префикс-функции в алгоритме Кнута-Морриса-Пратта можно использовать Z-функцию. Оценки времени работы и памяти при этом не изменятся.

См. также

Источники информации