|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| <tex dpi=200>1 \mid prec; r_i; p_i = 1 \mid L_{max}</tex> | | <tex dpi=200>1 \mid prec; r_i; p_i = 1 \mid L_{max}</tex> |
| | | |
Текущая версия на 19:26, 4 сентября 2022
[math]1 \mid prec; r_i; p_i = 1 \mid L_{max}[/math]
Задача: |
Дано [math]n[/math] работ и один станок. Для каждой работы известно её время появления [math]r_{i}[/math]. Время выполнения всех работ [math]p_i[/math] равно [math]1[/math]. Работа может начаться только после выполнения некоторых других работ, эта зависимость дана в виде ациклического графа. Необходимо составить такое расписание, чтобы значение [math]L_{max} = \max\limits_{i=1..n} (C_i - d_i)[/math] было минимальным. |
Описание алгоритма
Пусть [math]time[/math] — текущий момент времени.
Для каждого очередного значения [math]time[/math], которое изменяется от [math]0[/math] до времени окончания последней работы, будем:
- Выполнять работу [math]k[/math] из множества невыполненных работ, у которой [math]d_{k}[/math] минимально.
- Увеличивать [math]time[/math] на один.
Доказательство
Пусть существует оптимальное расписание [math] S^* [/math]. В этом расписании работа выполняется тогда, когда она появилась, либо когда закончилась другая работа.
Рассмотрим такое расписание [math]S^*[/math], которое как можно дольше совпадает с расписанием S, построенным алгоритмом. Пусть [math] t~-[/math] первый момент времени, когда в расписании [math]S[/math] начинает выполняться работа [math]i[/math], а в расписании [math]S^*[/math] работа [math]j[/math] (причем [math] i \ne j [/math]). Мы знаем, что [math] r_i, r_j \leqslant t [/math], а значит [math] d_i \leqslant d_j [/math] (поскольку при построении мы выбираем минимальное доступное [math] d_k [/math]). Пусть [math] i_1, i_2, \ldots, i_l~-[/math] все работы, которые находятся в расписании [math]S^*[/math] между работами [math]j[/math] и [math]i[/math] и являются наследниками работы [math]j[/math]. Кроме того, предположим, что эти работы упорядочены по времени начала выполнения. Теперь, если мы поставим работу [math]i_l[/math] вместо [math]i, i_{l-1}[/math] вместо [math]i_{l}, \ldots, j[/math] вместо [math]i_1, i[/math] вместо [math]j[/math], то мы снова получим возможное оптимальное расписание [math] S' [/math]. так как [math] d_i \leqslant d_j \leqslant d_v [/math], где [math] v \in {i_1, i_2, \ldots, i_l} [/math]. Последнее неравенство имеет место быть, поскольку все работы [math]i_v[/math] являются наследниками работы [math]j[/math].
Составление оптимального расписания
[math] S^* [/math]
Источники информации