|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| ==Определение== | | ==Определение== |
| Язык <tex>A</tex> сводится по Карпу к языку <tex>B</tex>, если существует функция <tex>f(x)</tex> такая, что <tex>x \in A</tex> тогда и только тогда, когда <tex>f(x) \in B</tex>. | | Язык <tex>A</tex> сводится по Карпу к языку <tex>B</tex>, если существует функция <tex>f(x)</tex> такая, что <tex>x \in A</tex> тогда и только тогда, когда <tex>f(x) \in B</tex>. |
Определение
Язык [math]A[/math] сводится по Карпу к языку [math]B[/math], если существует функция [math]f(x)[/math] такая, что [math]x \in A[/math] тогда и только тогда, когда [math]f(x) \in B[/math].
Обычно требуют, чтобы сводящая функция была вычислима за полиномиальное время от длины входа.
Заметим, что в таком случае класс языков [math]P[/math] замкнут относительно сведения по Карпу. Если язык [math]L[/math] не равен пустому языку и не равен [math]\Sigma ^*[/math], то существуют слова [math]x_1 \in L[/math] и [math]x_2 \not\in L[/math]. Сводящая функция [math]f(x)[/math] может решить сводимую задачу [math]M[/math] за полиномиальное время от длины входа и выдать [math]x_1[/math], если [math]x \in M[/math], или [math]x_2[/math], если [math]x \not\in M[/math]
Пример
Рассмотрим следующие языки:
[math]IND[/math] и [math]CLIQUE[/math] — множества пар [math]\langle G, k \rangle [/math], где [math]G[/math] — граф, [math]k[/math] — натуральное число. Пара [math]\langle G, k \rangle [/math] принадлежит [math]IND[/math], если в графе [math]G[/math] есть подграф с [math]k[/math] вершинами, в котором все эти вершины не связаны ребрами. Пара [math]\langle G, k \rangle [/math] принадлежит [math]CLIQUE[/math], если в графе [math]G[/math] есть подграф с [math]k[/math] вершинами, в котором между каждой парой вершин проходит ребро.
Существует функция [math]f[/math] такая, что [math]f(\langle G, k \rangle ) = \langle H, k \rangle [/math], где [math]H[/math] — граф, в котором столько же вершин, сколько и в [math]G[/math], а ребра расставлены следующим образом: если в графе [math]G[/math] между вершинами [math]u[/math] и [math]v[/math] есть ребро, то в графе [math]H[/math] это ребро не проводится, если же в графе [math]G[/math] между этими вершинами его не было, то в [math]H[/math] оно есть между соответствующими вершинами. Эта функция вычисляется за линейное время от длины входа, если представлять граф в виде матрицы смежности.
Заметим, что если в графе [math]G[/math] был независимый подграф с [math]k[/math] вершинами, то в [math]H[/math] между всеми вершинами подграфа будут ребра, следовательно, в графе [math]H[/math] будет клика с [math]k[/math] вершинами.
С другой стороны, если в [math]H[/math] есть клика с [math]k[/math] вершинами, значит между всеми вершинами клики проведены ребра, а значит их не было в графе [math]G[/math]. Таким образом, в графе [math]G[/math] был независимый подграф с [math]k[/math] вершинами.
Из всего сказанного следует, что [math]IND \le CLIQUE[/math].
Теорема о транзитивности
Операция сведения по Карпу транзитивна. То есть, если [math]A \le B[/math], [math]B \le C[/math], то [math]A \le C[/math].
Доказательство транзитивности
Пусть [math]A \le B[/math]. Тогда существует функция [math]f[/math]: [math]x \in A \Leftrightarrow f(x) \in B[/math]. Пусть в свою очередь [math]B \le C[/math] и есть функция [math]g[/math]: [math]y \in B \Leftrightarrow g(y) \in C[/math].
Рассмотрим функция [math]h(x) = g(f(x))[/math]. [math]x \in A \Leftrightarrow f(x) \in B[/math]. Также [math]f(x) \in B \Leftrightarrow g(f(x)) \in C[/math]. То есть [math]x \in A \Leftrightarrow h(x) = g(f(x)) \in C [/math].
Проверим, что функция [math]h(x)[/math] вычислима за полиномиальное время от длины входа. Для вычисления значения функции [math]h(x)[/math] сначала нужно вычислить [math]f(x)[/math]. Время вычисления [math]f(x)[/math] ограничено сверху некоторым полиномом [math]p_1(|x|)[/math], так как эта функция применяется в сведении по Карпу. Затем нужно вычислить [math]g(f(x))[/math]. Пусть [math]t = f(x)[/math]. Так как за единицу времени может быть написан лишь один символ, то [math]|t| \lt p_1(|x|)[/math]. Время вычисления [math]g(t)[/math] ограничено сверху некоторым полиномом [math]p_2(|t|)[/math]. Таким образом, время вычисления [math]h(x)[/math] не больше [math]p_2(p_1(|x|)) + p_1(|x|)[/math].
Смотрите также сведение по Куку.