|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| == Основные определения == | | == Основные определения == |
| {{Определение | | {{Определение |
Текущая версия на 19:43, 4 сентября 2022
Основные определения
Определение: |
Функция [math]f : N \rightarrow N \cup \lbrace \bot \rbrace[/math] называется вычислимой (англ. computable function), если существует программа, вычисляющая функцию [math]f[/math], такая, что:
- если [math]f(n)[/math] определено для натурального числа [math]n[/math], то программа завершает свою работу на входе [math]n[/math] и выводит [math]f(n)[/math];
- если [math]f(n)[/math] не определено, то программа зависает на входе [math]n[/math].
|
Определение: |
Функция [math]f : N \rightarrow N \cup \lbrace \bot \rbrace[/math] называется вычислимой, если её график [math]F = \lbrace \langle x, y\rangle \mid f(x)[/math] определено и равно [math]y \rbrace[/math] является перечислимым множеством пар натуральных чисел. |
Теорема: |
Приведенные определения эквивалентны. |
Доказательство: |
[math]\triangleright[/math] |
[math]\Rightarrow [/math]
Напишем полуразрешающую программу для множества [math]F[/math].
[math]p(\langle x, y\rangle):[/math]
for [math]a \in D(f)[/math]
if [math]a == x \land f(a) == y[/math]
return 1
Так как область определения вычислимой функции перечислима, то можно перебрать элементы области определения. Если алгоритм нашел нужную нам пару, то вернуть 1.
[math]\Leftarrow[/math]
Напишем программу, вычисляющую функцию [math]f[/math].
[math]f(n):[/math]
for [math]\langle x, y \rangle \in F[/math]
if [math]x == n[/math]
return [math]y[/math]
Так как [math]F[/math] — перечислимое множество, то можно перебрать элементы этого множества. |
[math]\triangleleft[/math] |
Замечание
Входами и выходами программ могут быть не только натуральные числа, но и двоичные строки, пары натуральных чисел, конечные последовательности слов и многое другое. Поэтому аналогичным образом можно определить понятие вычислимой функции для счётных множеств.
Примеры вычислимых функций
- Нигде не определённая функция вычислима.
[math]p(x):[/math]
while True
- [math]f(x) = x^2[/math], где [math]x[/math] — рациональное число.
[math]p(x):[/math]
return [math]x^2[/math]
Свойства вычислимой функции
Лемма: |
[math]f[/math] — вычислимая функция, [math]D(f)[/math] — область определения функции [math]f[/math]. Тогда [math]D(f)[/math] является перечислимым множеством. |
Доказательство: |
[math]\triangleright[/math] |
Для доказательства достаточно написать полуразрешающую программу.
[math]p(x):[/math]
[math]f(x)[/math]
return 1
Если функция [math]f[/math] определена на входе [math]x[/math], то [math]x \in D(f)[/math]. Тогда необходимо вернуть 1. Иначе программа зависнет при вызове [math]f(x)[/math]. |
[math]\triangleleft[/math] |
Лемма: |
[math]f[/math] — вычислимая функция, [math]E(f)[/math] — область значений [math]f[/math]. Тогда [math]E(f)[/math] является перечислимым множеством. |
Доказательство: |
[math]\triangleright[/math] |
Для доказательства достаточно написать полуразрешающую программу.
[math]p(x):[/math]
for [math]y \in D(f)[/math]
if [math]x == f(y)[/math]
return 1
Так как [math]D(f)[/math] перечислимо, то можно перебрать элементы этого множества. Если программа находит слово, то она возвращает 1. |
[math]\triangleleft[/math] |
Лемма: |
[math]f[/math] — вычислимая функция, [math]X[/math] — перечислимое множество. Тогда [math]f(X)[/math] является перечислимым множеством. |
Доказательство: |
[math]\triangleright[/math] |
Для доказательства достаточно написать полуразрешающую программу.
[math]p(x):[/math]
for [math]y \in D(f) \cap X[/math]
if [math]x == f(y)[/math]
return 1
Из замкнутости перечислимых языков относительно операции пересечения следует, что элементы множества [math]X \cap D(f)[/math] можно перебрать. Если программа находит слово, то она возвращает 1. |
[math]\triangleleft[/math] |
Лемма: |
[math]f[/math] — вычислимая функция, [math]X[/math] — перечислимое множество. Тогда [math]f^{-1}(X)[/math] является перечислимым множеством. |
Доказательство: |
[math]\triangleright[/math] |
Для доказательства достаточно написать полуразрешающую программу.
[math]p(x):[/math]
if [math]f(x) \in X[/math]
return 1
На проверке условия [math]f(x) \in X[/math] программа может зависнут, если [math]f(x)[/math] не определено или [math]f(x) \notin X[/math]. Если [math]f(x)[/math] не определено, то [math]x \notin f^{-1}(X)[/math]. Условие [math]f(x) \notin X[/math] можно проверить, так как [math]X[/math] перечислимо. |
[math]\triangleleft[/math] |
Характеристика перечислимых множеств через вычислимые функции
Определение: |
Множество [math]X[/math] называется перечислимым (англ. computably enumerable set), если выполняется хотя бы одно из условий:
- существует программа, перечисляющая все элементы [math]X[/math] в произвольном порядке;
- [math]X[/math] является областью определения вычиcлимой функции [math]f[/math];
- [math]X[/math] является областью значений вычиcлимой функции [math]f[/math];
- функция [math]f_X(x) = \begin{cases}
1, & x \in X \\
\bot, & x \notin X
\end{cases}[/math] — вычислима.
|
Теорема: |
Определения 1, 2, 3, 4 эквивалентны. |
Доказательство: |
[math]\triangleright[/math] |
- [math]1 \Rightarrow 4[/math]
Пусть [math]p[/math] — программа, перечисляющая [math]X[/math].
Приведём программу [math]q[/math], вычисляющую функцию [math]f_X(x)[/math]:
[math]q(x):[/math]
for [math]k = 1 \ .. \ \infty[/math]
if [math] p(k) == x [/math]
return 1
- [math]2 \Rightarrow 1[/math]
Пусть [math]X[/math] — область определения вычислимой функции [math]f[/math], вычисляемой программой [math]p[/math].
Тогда [math]X[/math] перечисляется такой программой:
[math]q():[/math]
for [math] TL = 1 \ .. \ \infty [/math]
for [math] k = 1 \ ..\ TL[/math]
if [math]p(k)|_{TL} \neq \bot [/math]
print [math]k[/math]
- [math]3 \Rightarrow 1[/math]
Пусть [math]X[/math] — область значений вычислимой функции [math]f[/math], вычисляемой программой [math]p[/math].
Тогда [math]X[/math] перечисляется такой программой:
[math]q():[/math]
for [math] TL = 1 \ .. \ \infty [/math]
for [math] k = 1 \ ..\ TL[/math]
if [math]p(k)|_{TL} \neq \bot [/math]
print [math]p(k)|_{TL}[/math]
- [math]4 \Rightarrow 2[/math], [math]4 \Rightarrow 3[/math]
Пусть дана [math]f_X(x)[/math].
Введём новую функцию [math]g(x) = x[/math], если [math]f_X(x) \neq \bot[/math].
Очевидно, что она вычислима и что её область определения и область значений совпадают с [math]X[/math]. |
[math]\triangleleft[/math] |
Теорема об униформизации
Теорема: |
Пусть [math]F[/math] — перечислимое множество пар натуральных чисел. Тогда существует вычислимая функция [math]f[/math], определённая на тех и только тех [math]x[/math], для которых найдется [math]y[/math], при котором [math]\langle x, y \rangle \in F[/math], причём значение [math]f(x)[/math] является одним из таких [math]y[/math]. |
Доказательство: |
[math]\triangleright[/math] |
Напишем программу, вычисляющую функцию [math]f[/math].
[math]f(x):[/math]
for [math]\langle a, b \rangle \in F[/math]
if [math]x == a[/math]
return [math]b[/math]
Так как множество [math]F[/math] перечислимо, то его элементы можно перебрать. |
[math]\triangleleft[/math] |
Теорема о псевдообратной функции
Теорема: |
Для любой вычислимой функции [math]f[/math] существует вычислимая функция [math]g[/math], являющаяся псевдообратной в следующем смысле: [math]E(f) = D(g)[/math], и при этом [math]f(g(f(x))) = f(x)[/math] для всех [math]x[/math], при которых [math]f(x)[/math] определена. |
Доказательство: |
[math]\triangleright[/math] |
Напишем программу, вычисляющую функцию [math]g[/math].
[math]g(n):[/math]
for [math]x \in D(f)[/math]
if [math]f(x) == n[/math]
return [math]x[/math]
Так как область определения вычислимой функции перечислима, то можно перебрать элементы области определения. |
[math]\triangleleft[/math] |
См. также
Источники информации