Список заданий по продвинутым алгоритмам 2023 осень — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «# Докажите, что дисперсия возвращаемого значения в алгоритме Морриса не превышает $1/2n^2$ #…»)
 
Строка 20: Строка 20:
 
# Изменим алгоритм из предыдущего задания, будем вместо $k$ хранить $2k$ элементов, а в конце оставим $k$ из них. Как изменится вероятность?
 
# Изменим алгоритм из предыдущего задания, будем вместо $k$ хранить $2k$ элементов, а в конце оставим $k$ из них. Как изменится вероятность?
 
# Оцените зависимость вероятности из предыдущих двух заданий от $c$, если вместо $k$ хранится $ck$ элементов, а в конце оставим $k$ из них.
 
# Оцените зависимость вероятности из предыдущих двух заданий от $c$, если вместо $k$ хранится $ck$ элементов, а в конце оставим $k$ из них.
 +
# Обозначим как $BP(n)$ время умножения булевых матриц размера $n \times n$ над $\vee, \wedge$. Обозначим как $MM(n)$ время умножения целочисленных матриц размера $n \times n$ над $+, \times$. Докажите, что $BP(n) = O(MM(n))$.
 +
# Докажите, что можно найти транзитивное замыкание графа за время $O(BP(n))$.
 +
# Пусть $A$ и $B$ - матрицы размера $n \times n$. Пусть $R \subset \{1, 2, \ldots, n\}$, $|R|=r$. Обозначим как $A^R$ матрицу, которая получается из $A$ удалением всех столбцов, кроме столбцов из множества $R$. Аналогично, обозначим как $B_R$ матрицу, которая получается из $B$ удалением всех строк, кроме строк из множества $R$. Докажите, что произведение матриц $A^R\cdot B_R$ может быть найдено за время $O((n/r)^2 MM(r))$, где $MM(r)$ - время умножения матриц размером $r\times r$.
 +
# Пусть $MM(n)=n^{2+\varepsilon}$, $\varepsilon>0$. Модифицируйте алгоритм построения BPWM, чтобы он работал за $MM(n) \log n$. Почему эта идея не сработает, если $MM(n) = O(n^2)$?
 +
# Докажите лемму с лекции про то, что если в урне $n$ шаров, из которых $w$ белых и $n/2\le wr \le n$, а событие $A$ означает, что из $r$ наугад выбранных из урны шаров оказался ровно один белый, то $P(A) \ge 1/2e$.
 +
# Сохраняется ли вероятность из предыдущего задания, если шары после вытаскивания возвращаются в урну? Если нет, то можно ли получить аналогичную оценку?
 +
# Как воспользоваться алгоритмом построения BPWM для поиска кратчайших путей между всеми вершинами в графе?
 +
# Нижняя оценка на сумму длин путей. Докажите, что можно построить граф, в котором $\Omega(n^2)$ пар вершин, расстояние между которыми $\Omega(n)$.

Версия 13:22, 3 октября 2023

  1. Докажите, что дисперсия возвращаемого значения в алгоритме Морриса не превышает $1/2n^2$
  2. Докажите, что дисперсия возвращаемого значения в алгоритме Флажолета-Мартина не превышает $1/(t+1)^2$
  3. Доминирующий элемент. Рассмотрим алгоритм, который ищет элемент, который встречается хотя бы $n/2$ раз в потоке $[a_1, \ldots, a_n]$. Пусть $0 \le a_i < N$ и $N \ge 2n$. Докажите, что детерминированный алгоритм, использующий $o(n\log(N/n))$ бит, не может решить поставленную задачу. Указание: рассмотрите состояние после половины элементов потока.
  4. Предложите алгоритм, использующий $O(\log(N+n))$ бит, который решает предыдущую задачу в предположении, что доминирующий элемент существует.
  5. Обобщите предыдущий алгоритм на случай $\varepsilon$-частых элементов: будем называть элемент $\varepsilon$-частым, если он составляет хотя бы $\varepsilon$ долю элементов во вводе. Как зависит память от $\varepsilon$?
  6. Все различные. Докажите или опровергните, что любой детерминированный алгоритм, который всегда корректно отвечает, верно ли, что все элементы во вводе $[a_1, a_2, \ldots, a_n]$ различны, должен использовать хотя бы $\Omega(n\log(2N/n))$ памяти.
  7. Недостающий элемент. Задан массив $[a_1, a_2, \ldots, a_{n-1}]$, где все элементы от $1$ до $n$, кроме одного, встречаются ровно один раз. Найдите недостающий элемент, используя $O(\log n)$ памяти.
  8. Два недостающих элемента. Задан массив $[a_1, a_2, \ldots, a_{n-2}]$, где все элементы от $1$ до $n$, кроме двух, встречаются ровно один раз. Найдите недостающие элементы, используя $o(n)$ памяти.
  9. Два недостающих элемента. Задан массив $[a_1, a_2, \ldots, a_{2n-1}]$, где все элементы от $1$ до $n$, кроме одного, встречаются ровно два раза, а один — один раз. Найдите этот элемент, используя $o(n)$ памяти.
  10. Два недостающих элемента. Задан массив $[a_1, a_2, \ldots, a_{2n-2}]$, где все элементы от $1$ до $n$, кроме двух, встречаются ровно два раза, а два — по одному разу. Найдите эти элементы, используя $o(n)$ памяти.
  11. В алгоритме KMV обозначим как $Z$ количество элементов, для которых $h(v) < kM/(1-\varepsilon)t$. Докажите, что $P(Z<k)<1/6$.
  12. Задача приблизительного подсчета числа вхождений. Biased Sketch. Рассмотрим алгоритм: выберем случайную хеш-функцию $h: U\to \{0,1, \ldots, m-1\}$ из универсального семейства. Заведем счетчик $cnt[0\ldots m-1]$ и в качестве операцими $update(x)$ будем делать $cnt[h(x)]$++, а в качестве $query(x)$ будем возвращать $cnt[h(x)]$. Пусть выполнено $n$ запросов $update$. Обозначим как $a(x)$ количество вхождений числа $x$. Оцените $P(query(x) > a(x) + \varepsilon n)$.
  13. CountMin. В предыдущей задаче чтобы лучше оценить количество, будем использовать несколько хеш-функций. Пусть мы используем $r$ хеш-функций, для каждой свой массив $cnt_i$, в качестве ответа на запрос будем выдавать $\min(cnt_i[h_i(x)])$. Какое $r$ необходимо выбрать, чтобы выполнялось $P(query(x) > a(x) + \varepsilon n) < \delta$?
  14. Задача приблизительного подсчета числа вхождений. Unbiased Sketch. Рассмотрим алгоритм: выберем случайную хеш-функцию $h: U\to \{0,1, \ldots, m-1\}$ из универсального семейства, а также случайную знаковую функцию $s: U \to \{-1,1\}$. Заведем счетчик $cnt[0\ldots m-1]$ и в качестве операцими $update(x)$ будем делать $cnt[h(x)]$ += s(x), а в качестве $query(x)$ будем возвращать $cnt[h(x)]\cdot s(x)$. Пусть выполнено $n$ запросов $update$. Обозначим как $a(x)$ количество вхождений числа $x$. Чему равно $E[query(x)]$?
  15. В условиях предыдущей задачи докажите, что $D[query(x)] \le \frac{1}{m}\sum_y a(y)^2$.
  16. В условиях предыдущих двух задач обозначим как $\lVert a \rVert_2 = \sqrt{\sum_x a(x)^2}$. Оцените $P(|query(x) - a(x)| > \varepsilon \lVert a \rVert_2)$.
  17. CountSketch В предыдущих трех задачах, чтобы лучше оценить количество, будем использовать несколько хеш-функций. Пусть мы используем $r$ хеш-функций, для каждой свой массив $cnt_i$, в качестве ответа на запрос будем выдавать $median(cnt_i[h_i(x)])$. Какое $r$ необходимо выбрать, чтобы выполнялось $P(|query(x) - a(x)| > \varepsilon \lVert a \rVert_2) < \delta$?
  18. Сравните оценки по времени, памяти и точности для CountMin и CountSketch. Сделайте вывод, когда какой из них лучше.
  19. Поиск $k$ самых частых. Используем тот или иной апроксимационный алгоритм (CountMin или CountSketch), мы хотим найти $k$ самых частых элементов в последовательности $a_1, \ldots, a_n$. Будем поддерживать $set$ из $k$ самых частых, упорядоченный по оценке на число их вхождений. Рассматривая очередной элемент, добавляем его в set, если его оценка на число вхождений становится больше, чем у самого редкого в $set$-е. Оцените вероятность, что для всех $x$ в $set$-е в конце выполнено $a(x) \ge (1-\varepsilon)a(y)$, где $y$ - это $k$-й по частоте встречаемости элемент.
  20. Изменим алгоритм из предыдущего задания, будем вместо $k$ хранить $2k$ элементов, а в конце оставим $k$ из них. Как изменится вероятность?
  21. Оцените зависимость вероятности из предыдущих двух заданий от $c$, если вместо $k$ хранится $ck$ элементов, а в конце оставим $k$ из них.
  22. Обозначим как $BP(n)$ время умножения булевых матриц размера $n \times n$ над $\vee, \wedge$. Обозначим как $MM(n)$ время умножения целочисленных матриц размера $n \times n$ над $+, \times$. Докажите, что $BP(n) = O(MM(n))$.
  23. Докажите, что можно найти транзитивное замыкание графа за время $O(BP(n))$.
  24. Пусть $A$ и $B$ - матрицы размера $n \times n$. Пусть $R \subset \{1, 2, \ldots, n\}$, $|R|=r$. Обозначим как $A^R$ матрицу, которая получается из $A$ удалением всех столбцов, кроме столбцов из множества $R$. Аналогично, обозначим как $B_R$ матрицу, которая получается из $B$ удалением всех строк, кроме строк из множества $R$. Докажите, что произведение матриц $A^R\cdot B_R$ может быть найдено за время $O((n/r)^2 MM(r))$, где $MM(r)$ - время умножения матриц размером $r\times r$.
  25. Пусть $MM(n)=n^{2+\varepsilon}$, $\varepsilon>0$. Модифицируйте алгоритм построения BPWM, чтобы он работал за $MM(n) \log n$. Почему эта идея не сработает, если $MM(n) = O(n^2)$?
  26. Докажите лемму с лекции про то, что если в урне $n$ шаров, из которых $w$ белых и $n/2\le wr \le n$, а событие $A$ означает, что из $r$ наугад выбранных из урны шаров оказался ровно один белый, то $P(A) \ge 1/2e$.
  27. Сохраняется ли вероятность из предыдущего задания, если шары после вытаскивания возвращаются в урну? Если нет, то можно ли получить аналогичную оценку?
  28. Как воспользоваться алгоритмом построения BPWM для поиска кратчайших путей между всеми вершинами в графе?
  29. Нижняя оценка на сумму длин путей. Докажите, что можно построить граф, в котором $\Omega(n^2)$ пар вершин, расстояние между которыми $\Omega(n)$.