Локальная теорема о неявном отображении — различия между версиями
Строка 10: | Строка 10: | ||
}} | }} | ||
2) <tex>\overline x \in V \subset \mathbb{R}^n, \overline y \in W \subset \mathbb{R}^m</tex>; <tex>V\times W=\{(\overline x, \overline y) \in \mathbb R^{n+m},\overline x \in V, \overline y \in W\}</tex>.<br><tex>f\colon V(\overline {x_0})\times W(\overline {y_0}) \to \mathbb{R}^m</tex>, <tex>f(x_0,y_0)=0^m</tex>. Существуют ли такие <tex>\delta_1,\delta_2>0</tex>, что <tex>\forall\overline x\in V_{\delta_1}(\overline{x_0})~\nexists\overline y\in W_{\delta_2}(\overline{y_0})\colon f(\overline x,\overline y)=0^m</tex>?<br> | 2) <tex>\overline x \in V \subset \mathbb{R}^n, \overline y \in W \subset \mathbb{R}^m</tex>; <tex>V\times W=\{(\overline x, \overline y) \in \mathbb R^{n+m},\overline x \in V, \overline y \in W\}</tex>.<br><tex>f\colon V(\overline {x_0})\times W(\overline {y_0}) \to \mathbb{R}^m</tex>, <tex>f(x_0,y_0)=0^m</tex>. Существуют ли такие <tex>\delta_1,\delta_2>0</tex>, что <tex>\forall\overline x\in V_{\delta_1}(\overline{x_0})~\nexists\overline y\in W_{\delta_2}(\overline{y_0})\colon f(\overline x,\overline y)=0^m</tex>?<br> | ||
− | Если это так, то в силу единственности y определяем <tex>\overline y = \phi(\overline x)</tex> на <tex>V_{\delta_1}(\overline{x_0})</tex> так, чтобы <tex>f(\overline x,\phi(\overline x))=0^m</tex>. <tex>\phi</tex> — неявное отображение, определяется <tex>f(\overline x,\overline y)=0^m,~(x_0,y_0)\colon f(\overline{x_0},\overline{y_0})=0^m</tex><br> | + | Если это так, то в силу единственности y определяем <tex>\overline y = \phi(\overline x)</tex> на <tex>V_{\delta_1}(\overline{x_0})</tex> так, чтобы <tex>f(\overline x,\phi(\overline x))=0^m</tex>. <tex>\phi</tex> — неявное отображение, определяется как <tex>f(\overline x,\overline y)=0^m,~(x_0,y_0)\colon f(\overline{x_0},\overline{y_0})=0^m</tex><br><br> |
Пример, единичная окружность:<br> | Пример, единичная окружность:<br> | ||
− | <tex>x,y\in\mathbb{R},f(x,y)=x^2+y^2-1. f(x,y)=0\Longleftrightarrow x^2+y^2=1</tex><br> | + | <tex>x,y\in\mathbb{R},f(x,y)=x^2+y^2-1.~f(x,y)=0\Longleftrightarrow x^2+y^2=1</tex><br> |
В малых окрестностях начальных данных вертикаль, проведённая через <tex>x</tex>, будет давать соответствующий единственный <tex>y</tex>. Если решать задачу вне окрестности <tex>y_0</tex>, получится 2 <tex>y</tex>, теряется единственность <tex>y</tex>. Именно поэтому крайне важно указывать окрестности, в которых мы ищем отображения. <tex>y=\sqrt{1-x^2};y=\pm\sqrt{1-x^2}</tex>.<br> | В малых окрестностях начальных данных вертикаль, проведённая через <tex>x</tex>, будет давать соответствующий единственный <tex>y</tex>. Если решать задачу вне окрестности <tex>y_0</tex>, получится 2 <tex>y</tex>, теряется единственность <tex>y</tex>. Именно поэтому крайне важно указывать окрестности, в которых мы ищем отображения. <tex>y=\sqrt{1-x^2};y=\pm\sqrt{1-x^2}</tex>.<br> | ||
Сейчас мы установим условия, при которых неявное отображение будет существовать:<br> | Сейчас мы установим условия, при которых неявное отображение будет существовать:<br> | ||
− | <tex>\overline x=f(\overline x,\overline y). \overline x \in \mathbb R^n;~y,z\in R^m. f_{\overline y}'</tex> — произвольное отображение <tex>f</tex>, при фиксированном <tex>x</tex> и варьирующемся <tex>y</tex>. | + | <tex>\overline x=f(\overline x,\overline y).~\overline x \in \mathbb R^n;~y,z\in R^m.~f_{\overline y}'</tex> — произвольное отображение <tex>f</tex>, при фиксированном <tex>x</tex> и варьирующемся <tex>y</tex>.<br> |
+ | <tex>f_{\overline y}'(\overline x,\overline y)</tex> (зависит и от <tex>\overline x</tex>, и от <tex>\overline y</tex>). Непрерывность <tex>f_{\overline y}'</tex>: производная — линейный оператор, поэтому непрерывность понимается в метрике линейного оператора:<br> | ||
+ | <tex>\forall \varepsilon >0 \exists \delta > 0\colon~\|\overline{\mathcal{4}x}\|,\|\overline{\mathcal{4}y}\|<\delta\Rightarrow\|f_{\overline y}'(\overline x + \overline{\mathcal{4}x},\overline y + \overline{\mathcal{4}y})-f_{\overline y}'(\overline x,\overline y)\|<\varepsilon</tex><br> | ||
+ | <tex>f_{\overline y}'(\overline x,\overline y)</tex> — матрица, размером <tex>m\times m</tex>. Оператор непрерывно обратим(???) в <tex>(\overline x,\overline y)\Longleftrightarrow</tex> у этой матрицы существует обратная (её детерминант не равен нулю). |
Версия 06:15, 2 июня 2011
1) Принцип сжатия Банаха Пусть
- B-пространство; пусть — замкнутый шар в ; . Оно называется сжатием на этом шаре, если , такое, чтоТеорема: |
У любого сжимающего отображения существует неподвижная точка |
Доказательство: |
|
2)
, . Существуют ли такие , что ?
Если это так, то в силу единственности y определяем на так, чтобы . — неявное отображение, определяется как
Пример, единичная окружность:
В малых окрестностях начальных данных вертикаль, проведённая через , будет давать соответствующий единственный . Если решать задачу вне окрестности , получится 2 , теряется единственность . Именно поэтому крайне важно указывать окрестности, в которых мы ищем отображения. .
Сейчас мы установим условия, при которых неявное отображение будет существовать:
— произвольное отображение , при фиксированном и варьирующемся .
(зависит и от , и от ). Непрерывность : производная — линейный оператор, поэтому непрерывность понимается в метрике линейного оператора:
— матрица, размером . Оператор непрерывно обратим(???) в у этой матрицы существует обратная (её детерминант не равен нулю).