Доказательство теоремы Эдмондса-Лоулера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
== Условие теоремы ==
 
 
{{Теорема
 
{{Теорема
 
|about=
 
|about=
Строка 20: Строка 19:
  
 
Конструктивно построим <tex>\forall M_1, M_2</tex> такие <tex>I \in I_1 \cap I_2</tex> и <tex>A \subseteq X</tex>, что <tex>|I| = r_1(A) + r_2(X \setminus A)</tex>.
 
Конструктивно построим <tex>\forall M_1, M_2</tex> такие <tex>I \in I_1 \cap I_2</tex> и <tex>A \subseteq X</tex>, что <tex>|I| = r_1(A) + r_2(X \setminus A)</tex>.
 +
 +
Обозначим <tex>S = \left\{x|I \cup \{x\} \in I_1\right\}</tex>, <tex>T = \left\{x|I \cup \{x\} \in I_2\right\}</tex>. Если <tex>S \cap T \ne \varnothing</tex>, добавим их пересечение в <tex>I</tex>.
 +
 +
{{Лемма
 +
|about=1
 +
|statement = <tex>A</tex> — независимое множество. <tex>B \subset A</tex>, в <tex>B</tex> существует единственное полное паросочетание. Тогда <tex>A \oplus B</tex> — независимое.
 +
}}
 +
 +
Построим [[Граф замен для двух матроидов|граф замен]] <tex>G_I</tex>. Добавим вершину <tex>z</tex>, не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества <tex>S</tex>. Пусть <tex>p</tex> — кратчайший путь из <tex>S</tex> в <tex>T</tex>, <tex>p_1</tex> — путь <tex>p</tex> с добавленным в начало ребром из <tex>z</tex>. По лемме 1 и [[Лемма о единственном паросочетании в подграфе замен, индуцированном кратчайшим путем|лемме о единственном паросочетании]] <tex>I \oplus p_1 \in I_2</tex>. Теперь добавим вершину <tex>u</tex>, не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества <tex>T</tex>. Тогда <tex>p_2</tex> (путь <tex>p</tex> с добавленным ребром в <tex>u</tex>) — кратчайший путь из <tex>S</tex> в <tex>u</tex>. Аналогично, <tex>I \oplus p_2 \in I_1</tex>. Отсюда следует, что <tex>I \oplus p \in I_1 \cap I_2</tex>, причём <tex>|I \oplus p| = |I| + 1</tex>.
 +
 +
Будем таким образом увеличивать <tex>I</tex>, пока существует путь <tex>p</tex>.
 
}}
 
}}

Версия 23:20, 7 июня 2011

Теорема (Эдмондса - Лоулера):
Пусть [math]M_1=\langle X, I_1\rangle[/math], [math]M_2=\langle X, I_2\rangle[/math] — матроиды. Тогда

[math]\max\limits_{I \in I_1 \cap I_2 } |I| = \min\limits_{A \subseteq X} \left(r_1(A) + r_2(X \setminus A)\right)[/math].

Где [math]r_1[/math] и [math]r_2[/math] — ранговые функции в первом и втором матроиде соответственно.
Доказательство:
[math]\triangleright[/math]

Докажем неравенство [math]\max\limits_{I \in I_1 \cap I_2 } |I| \le \min\limits_{A \subseteq X} r_1(A) + r_2(X \setminus A)[/math]
Выберем произвольные [math]I \in I_1 \cap I_2[/math], [math]A \subseteq X[/math]
[math]|I| = |I \cap A| + |I \cap (X \setminus A)|[/math]
[math]I \cap A[/math] и [math]I \cap (X \setminus A)[/math] - независимые в обоих матроидах (как подмножества независимового [math]I[/math]), значит [math]|I| = r_1(I \cap A) + r_2(I \cap (X \setminus A))[/math]
Но [math]r_1(I \cap A) \le r_1(A)[/math] и [math]r_2(I \cap (X \setminus A)) \le r_2(X \setminus A)[/math], значит [math]|I| \le r_1(A) + r_2(X \setminus A)[/math]
В силу произвольности [math]I[/math] и [math]A[/math] получаем
[math]\max\limits_{I \in I_1 \cap I_2 } |I| \le \min\limits_{A \subseteq X} r_1(A) + r_2(X \setminus A)[/math]


Конструктивно построим [math]\forall M_1, M_2[/math] такие [math]I \in I_1 \cap I_2[/math] и [math]A \subseteq X[/math], что [math]|I| = r_1(A) + r_2(X \setminus A)[/math].

Обозначим [math]S = \left\{x|I \cup \{x\} \in I_1\right\}[/math], [math]T = \left\{x|I \cup \{x\} \in I_2\right\}[/math]. Если [math]S \cap T \ne \varnothing[/math], добавим их пересечение в [math]I[/math].

Лемма (1):
[math]A[/math] — независимое множество. [math]B \subset A[/math], в [math]B[/math] существует единственное полное паросочетание. Тогда [math]A \oplus B[/math] — независимое.

Построим граф замен [math]G_I[/math]. Добавим вершину [math]z[/math], не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества [math]S[/math]. Пусть [math]p[/math] — кратчайший путь из [math]S[/math] в [math]T[/math], [math]p_1[/math] — путь [math]p[/math] с добавленным в начало ребром из [math]z[/math]. По лемме 1 и лемме о единственном паросочетании [math]I \oplus p_1 \in I_2[/math]. Теперь добавим вершину [math]u[/math], не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества [math]T[/math]. Тогда [math]p_2[/math] (путь [math]p[/math] с добавленным ребром в [math]u[/math]) — кратчайший путь из [math]S[/math] в [math]u[/math]. Аналогично, [math]I \oplus p_2 \in I_1[/math]. Отсюда следует, что [math]I \oplus p \in I_1 \cap I_2[/math], причём [math]|I \oplus p| = |I| + 1[/math].

Будем таким образом увеличивать [math]I[/math], пока существует путь [math]p[/math].
[math]\triangleleft[/math]