Сжатое многомерное дерево отрезков — различия между версиями
Строка 3: | Строка 3: | ||
Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\,...\,,(z_a,z_b)</tex> | Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\,...\,,(z_a,z_b)</tex> | ||
}} | }} | ||
− | Вообще говоря, с поставленной задачей справится и обычное <tex>p</tex>-мерное дерево отрезков. Для этого достаточно на <tex>i</tex>-той глубине вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать бинарный поиск. Очевидно, запрос будет делаться за <tex>O(log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти. | + | Вообще говоря, с поставленной задачей справится и обычное <tex>p</tex>-мерное дерево отрезков. Для этого достаточно на <tex>i</tex>-той глубине вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за <tex>O(log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти. |
==Структура== | ==Структура== |
Версия 10:30, 8 июня 2011
Задача: |
Пусть имеется множество | , состоящее из взвешенных точек в -мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в -мерном прямоугольнике
Вообще говоря, с поставленной задачей справится и обычное
-мерное дерево отрезков. Для этого достаточно на -той глубине вложенности строить дерево отрезков по всевозможным -тым координатам точек множества , а при запросе использовать бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за времени, а сама структура данных будет занимать памяти.Структура
Для уменьшения количества занимаемой памяти можно провести оптимизацию
-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы массива, лежащие в этом подотрезке. Казалось бы, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины уже готового дерева будем строить не по всем элементам множества , а только по сохраненному в этой вершине подотрезку. Действительно, зачем строить дерево по всем элементам, когда элементы вне подотрезка уже были "исключены" и заведомо лежат вне желаемого -мерного прямоугольника.Построив дерево отрезков по первой координатедерева отрезков внутри вершины будем строить только по тем элементам множества , которые встречаются в отрезке, за который отвечает эта вершина. Действительно, другие элементы уже были "исключены" и заведомо лежат вне желаемого -мерного прямоугольника.
Построение дерева и запрос операции
Алгоритм построения такого "усеченного" дерева отрезков будет выглядеть следующим образом:
- Cоставить массив из всех элементов множества , упорядочить его по первой координате
- Построить на нём дерево отрезков с сохранением подмассива в каждой вершине
- Все подмассивы в вершинах получившегося дерева отрезков упорядочить по следующей координате, после чего повторить построение дерева для каждого из них
Псевдокод:
build_normal_tree(element[] array) { //построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине } get_inside_array(vertex) { //получение подмассива, сохраненного в вершине vertex } build_compressed_tree(element[] array, int coordinate = 0) { //собственно, построение сжатого дерева отрезков if (coordinate < p) { sort(array, coordinate); //сортировка массива по нужной координате segment_tree = build_normal_tree(array); for (each vertex in segment_tree) { build_compressed_tree(inside_array(each), coordinate + 1); } } }
При такой оптимизации асимптотика размера структуры составит
, а запрос будет аналогичен запросу в обычном -мерном дереве отрезков за . Но расплатой станет невозможность делать произвольный запрос модификации: в самом деле, если появится новый элемент, то это приведёт к тому, что мы должны будем в каком-либо дереве отрезков по второй или более координате добавить новый элемент в середину, что эффективно сделать невозможно.