Примеры матроидов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 29: Строка 29:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
Пусть <tex>G = \langle X, Y, E \rangle</tex> - двудольный граф. Тогда <tex>M = \langle X, I = \mathcal{f} A \subset X \mid \exists парасочетание M: X \cap ends(M) = A \mathcal {g} \rangle </tex> называют '''трансверсальным матроидом.'''
+
Пусть <tex>G = \langle X, Y, E \rangle</tex> - двудольный граф. Тогда <tex>M = \langle X, I = \mathcal{f} A \subset X \mid \exists </tex> парасочетание <tex> M: X \cap ends(M) = A \mathcal {g} \rangle </tex> называют '''трансверсальным матроидом.'''
 
}}
 
}}
  

Версия 01:49, 14 июня 2011

Графовый матроид

Определение:
Пусть [math]G = \langle V, E \rangle[/math] - неориентированный граф. Тогда [math]M = \langle E, I \rangle [/math], где [math]I[/math] состоит из всех ацикличных множеств ребер (то есть являющихся лесами), называют графовым (графическим) матроидом.


Лемма:
Графовый матроид является матроидом.
Доказательство:
[math]\triangleright[/math]

Проверим выполнение аксиом независимости:

1) [math]\varnothing \in I[/math]

Пустое множество является ациклическим, а значит входит в [math]I[/math].

2) [math]A \subset B, B \in I \Rightarrow A \in I[/math]

Очевидно, что любой подграф леса, так же является лесом, а значит входит в [math]I[/math].

3) [math]\mid A \mid \lt \mid B \mid \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I[/math]

В графе [math]G_A = \langle V, A \rangle [/math] как минимум две компоненты связанности, иначе [math]G_A[/math] являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью.

Допустим в [math]B[/math] не существует ребра, соединяющего две различные компоненты связанности из [math]G_A[/math], значит любая компонента связанности из [math]G_B[/math] целиком вершинно-входит в какую-либо компоненту из [math]G_A[/math]. Рассмотрим любую компоненту связанности Q из [math]G_A[/math], у неё [math]k[/math] вершин и [math]k - 1[/math] рёбер. Теперь рассмотрим все компоненты связанности [math]P_i[/math] из [math]G_B[/math] вершинно-входящие в [math]Q[/math], пусть их [math]m[/math] штук, тогда суммарное кол-во рёбер из равно [math]k - m[/math] что не превосходит [math]k - 1[/math] (кол-во рёбер в [math]Q[/math]). Просуммируем неравенство по всем компонентам связанности из [math]G_A[/math] и получим [math]\mid A \mid \gt \mid B \mid[/math] что протеворечит условию. Значит предположение не верно и в [math]B[/math] существует искомое ребро [math]x[/math] из разных компонент связанности [math]G_B[/math].
[math]\triangleleft[/math]

Трансверсальный матроид

Определение:
Пусть [math]G = \langle X, Y, E \rangle[/math] - двудольный граф. Тогда [math]M = \langle X, I = \mathcal{f} A \subset X \mid \exists [/math] парасочетание [math] M: X \cap ends(M) = A \mathcal {g} \rangle [/math] называют трансверсальным матроидом.


Лемма:
Трансверсальный матроид является матроидом.
Доказательство:
[math]\triangleright[/math]

Проверим выполнение аксиом независимости:

1) [math]\varnothing \in I[/math]

Пустое парасочетание удовлетворяет условию.

2) [math]A \subset B, B \in I \Rightarrow A \in I[/math]

Подмножество парасочетания также является парасочетанием. Удалим из исходного парасочетания [math]M[/math] ребра, концами которых являются вершины из множества [math]A \setminus B[/math]. Оставшееся множество ребер будет являться парасочетанием, которое обозначим за [math]M'[/math]. И будет выполняться условие [math] X \cap ends(M') = B [/math] , что значит, [math] B \subset I [/math].

3) [math]\mid A \mid \lt \mid B \mid \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I[/math]
[math]\triangleleft[/math]