Доказательство теоремы Эдмондса-Лоулера — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 16: Строка 16:
 
|about=1
 
|about=1
 
|statement = <tex>A</tex> — независимое множество в матроиде <tex>M=\langle X, I\rangle</tex>. <tex>B \subset X</tex>, <tex>|B|=|A|</tex> и в подграфе графа замен <tex>G_M</tex>, индуцированном <tex>A \oplus B</tex>, существует единственное полное паросочетание. Тогда <tex>B</tex> — независимое в матроиде <tex>M</tex>.
 
|statement = <tex>A</tex> — независимое множество в матроиде <tex>M=\langle X, I\rangle</tex>. <tex>B \subset X</tex>, <tex>|B|=|A|</tex> и в подграфе графа замен <tex>G_M</tex>, индуцированном <tex>A \oplus B</tex>, существует единственное полное паросочетание. Тогда <tex>B</tex> — независимое в матроиде <tex>M</tex>.
|proof= Добавим вершину <tex>u</tex>, не влияющую на независимость в матроиде — в неё будут вести рёбра из всех вершин множества <tex>T</tex>, из неё рёбер не будет. Ориентируем рёбра паросочетания налево, рёбра не из паросочетания направо. Из единственности паросочетания полученный граф будет ациклическим.
+
|proof= Обозначим граф (неориентированный), индуцированный <tex>A \oplus B</tex> за <tex>G</tex>. Обозначим вершины из <tex>A \setminus B</tex> за <tex>y_i</tex>, из <tex>B \setminus A</tex> за <tex>z_i</tex>. Перенумеруем вершины так, чтобы рёбра из паросочетания соединяли вершины с одинаковыми индексами, и <tex>\forall i,j: i < j</tex> не существовало бы ребра между вершинами <tex>y_i</tex> и <tex>z_j</tex> (возможность первого следует из существования полного паросочетания, второго — из его единственности).  
  
 
Пусть <tex>B</tex> — не независимо, значит, <tex>\exists</tex> цикл <tex>C \subset B</tex>. Обозначим <tex>i = \min k: z_k \in C</tex>.  
 
Пусть <tex>B</tex> — не независимо, значит, <tex>\exists</tex> цикл <tex>C \subset B</tex>. Обозначим <tex>i = \min k: z_k \in C</tex>.  
  
<tex>\forall j > i \quad y_iz_j \notin G_M(A) \Rightarrow A \setminus y_i \cup z_j \notin I \Rightarrow C \setminus z_i \subset \langle A \setminus y_i \rangle</tex>.  
+
<tex>\forall j > i \quad y_iz_j \notin G(A) \Rightarrow A \setminus y_i \cup z_j \notin I \Rightarrow C \setminus z_i \subseteq \langle A \setminus y_i \rangle</tex>.  
  
<tex>z_i \in \langle C \setminus z_i \rangle \subset \langle A \setminus y_i \rangle \Rightarrow A \setminus y_i \cup z_i \notin I</tex>, что приводит к противоречию.
+
Так как <tex>C</tex> — цикл, то <tex>C \subseteq \langle C \setminus z_i \rangle \subseteq \langle A \setminus y_i \rangle</tex>. Это означает, что <tex>z_i \in \langle A \setminus y_i \rangle</tex>, и, следовательно, <tex> A \setminus y_i \cup z_i \notin I</tex>, что приводит к противоречию с существованием ребра <tex>y_i z_i</tex>.
 
}}
 
}}
  

Версия 19:59, 14 июня 2011

Теорема (Эдмондса - Лоулера):
Пусть [math]M_1=\langle X, I_1\rangle[/math], [math]M_2=\langle X, I_2\rangle[/math] — матроиды. Тогда

[math]\max\limits_{I \in I_1 \cap I_2 } |I| = \min\limits_{A \subseteq X} \left(r_1(A) + r_2(X \setminus A)\right)[/math].

Где [math]r_1[/math] и [math]r_2[/math] — ранговые функции в первом и втором матроиде соответственно.
Доказательство:
[math]\triangleright[/math]

Неравенство [math]\max\limits_{I \in I_1 \cap I_2 } |I| \le \min\limits_{A \subseteq X} r_1(A) + r_2(X \setminus A)[/math] доказывается здесь.

Конструктивно построим [math]\forall M_1, M_2[/math] такие [math]I \in I_1 \cap I_2[/math] и [math]A \subseteq X[/math], что [math]|I| = r_1(A) + r_2(X \setminus A)[/math]. Этого будет достаточно для доказательства теоремы.

Обозначим [math]S = \left\{x|I \cup \{x\} \in I_1\right\}[/math], [math]T = \left\{x|I \cup \{x\} \in I_2\right\}[/math]. Если [math]S \cap T \ne \varnothing[/math], добавим их пересечение в [math]I[/math].

Лемма (1):
[math]A[/math] — независимое множество в матроиде [math]M=\langle X, I\rangle[/math]. [math]B \subset X[/math], [math]|B|=|A|[/math] и в подграфе графа замен [math]G_M[/math], индуцированном [math]A \oplus B[/math], существует единственное полное паросочетание. Тогда [math]B[/math] — независимое в матроиде [math]M[/math].
Доказательство:
[math]\triangleright[/math]

Обозначим граф (неориентированный), индуцированный [math]A \oplus B[/math] за [math]G[/math]. Обозначим вершины из [math]A \setminus B[/math] за [math]y_i[/math], из [math]B \setminus A[/math] за [math]z_i[/math]. Перенумеруем вершины так, чтобы рёбра из паросочетания соединяли вершины с одинаковыми индексами, и [math]\forall i,j: i \lt j[/math] не существовало бы ребра между вершинами [math]y_i[/math] и [math]z_j[/math] (возможность первого следует из существования полного паросочетания, второго — из его единственности).

Пусть [math]B[/math] — не независимо, значит, [math]\exists[/math] цикл [math]C \subset B[/math]. Обозначим [math]i = \min k: z_k \in C[/math].

[math]\forall j \gt i \quad y_iz_j \notin G(A) \Rightarrow A \setminus y_i \cup z_j \notin I \Rightarrow C \setminus z_i \subseteq \langle A \setminus y_i \rangle[/math].

Так как [math]C[/math] — цикл, то [math]C \subseteq \langle C \setminus z_i \rangle \subseteq \langle A \setminus y_i \rangle[/math]. Это означает, что [math]z_i \in \langle A \setminus y_i \rangle[/math], и, следовательно, [math] A \setminus y_i \cup z_i \notin I[/math], что приводит к противоречию с существованием ребра [math]y_i z_i[/math].
[math]\triangleleft[/math]

Построим граф замен [math]G_I[/math]. Добавим вершину [math]z[/math], не влияющую на независимость в первом матроиде — из неё будут вести рёбра во все вершины множества [math]S[/math]. Пусть [math]p[/math] — кратчайший путь из [math]S[/math] в [math]T[/math], [math]p_1[/math] — путь [math]p[/math] с добавленным в начало ребром из [math]z[/math]. По лемме 1 и лемме о единственном паросочетании [math]I \oplus p_1 \in I_2[/math]. Теперь добавим вершину [math]u[/math], не влияющую на независимость во втором матроиде — в неё будут вести рёбра из всех вершин множества [math]T[/math]. Тогда [math]p_2[/math] (путь [math]p[/math] с добавленным ребром в [math]u[/math]) — кратчайший путь из [math]S[/math] в [math]u[/math]. Аналогично, [math]I \oplus p_2 \in I_1[/math]. Отсюда следует, что [math]I \oplus p \in I_1 \cap I_2[/math], причём [math]|I \oplus p| = |I| + 1[/math].

Будем таким образом увеличивать [math]I[/math], пока существует путь [math]p[/math]. Рассмотрим момент, когда такого пути не нашлось. Введём обозначение: [math]A = \{u|u \rightsquigarrow T\}[/math]. Докажем, что [math]r_1(A) = |I \cap A|[/math] от противного. Пусть [math]r_1(A) \gt |I \cap A|[/math]. Обозначим [math](I \cap A) \cup \{u\}[/math] как [math]A'[/math]. Заметим, что [math]A' \in I_1[/math]. Возможны 2 случая:

  1. [math]A' \cap I = \varnothing[/math], тогда [math]u \in S[/math], что приводит к противоречию.
  2. Можно добавлять из [math]I \setminus A'[/math] в [math]A'[/math], пока [math]|I| \gt |A'|[/math] (по аксиоме замены в [math]M_1[/math]). Теперь [math]A' = I \setminus \{z\}[/math]. [math]I \setminus \{z\} \cup \{u\} \in I_1[/math], следовательно, ребро [math]zu \in G_I[/math], что приводит к противоречию.

Следовательно, [math]r_1(A) = |I \cap A|[/math]. Аналогично, [math]r_2(\overline A) = |I \cap \overline A|[/math]. Отсюда [math]r_1(A) + r_2(\overline A) = |I|[/math], то есть при найденных [math]I[/math] и [math]A[/math] достигается равенство.

Построен пример равенства, значит, теорема доказана.
[math]\triangleleft[/math]