Функциональные зависимости: замыкание атрибутов, неприводимые множества функциональных зависимостей, их построение
Версия от 11:27, 29 декабря 2020; Darkey (обсуждение | вклад) (→Основное свойство замыкания множества атрибутов)
Замыкание атрибутов
Определение: |
Замыкание множества атрибутов | над множеством ФЗ - максимальное по включению множество атрибутов функционально зависящих от .
Максимальный размер равен числу атрибутов в отношении.
Основное свойство замыкания множества атрибутов
Теорема: |
Доказательство: |
По определению замыкания атрибутов. |
Данная теорема позволяет проверять эквивалентность множеств ФЗ без вычисления замыканий ФЗ:
Даны множества и и пусть для простоты , необходимо проверить является ли эквивалентным . Для этого достаточно построить замыкание и по теореме проверить все фз из , которые отсутствуют в . Если доказать, что из выводимы все базовые правила , то их замыкания ФЗ будут совпадать, следовательно, два множества эквивалентны. Например, пусть , тогда если , то .
{{Следствие |id=идентификатор (необязательно), пример: proposal1. |author=Автор утверждения (необязательно) |about=О чем утверждение (необязательно) |statement=утверждение |proof=доказательство (необязательно) }}
Данное следствие позволяет формально выделять ключи и надключи.
Построение
= X do foreach : if then while есть изменения
Теорема: |
Доказательство: |
1) |