Граф компонент рёберной двусвязности
Версия от 06:40, 24 сентября 2011; 192.168.0.2 (обсуждение)
| Определение: |
| Пусть граф связен. Обозначим — компоненты реберной двусвязности, а — мосты . Построим граф , в котором вершинами будут , а ребрами — , соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф называют графом компонент реберной двусвязности графа . |
| Лемма: |
В определении, приведенном выше, — дерево. |
| Доказательство: |
|
а) — связно. (Следует из определения) б) В нет циклов. Пусть какие-то две смежные вершины и принадлежат какому-то циклу. Тогда ребро принадлежит этому же циклу. Следовательно, существуют два реберно-непересекающихся пути между вершинами и , т.е. — не является мостом. Но — мост по условию. Получили противоречие. — дерево. |