Сложностный класс ZPP
Версия от 22:26, 4 июня 2012; Igor buzhinsky (обсуждение | вклад) (переименовал Класс ZPP в Сложностный класс ZPP: Новая версия статьи будет называться "Класс ZPP", при этом пока не хочется избавляться от э...)
Определения
Классом вероятностная машина Тьюринга такая, что математическое ожидание времени ее работы на входе длины равно .
называется множество языков, для которых существует
Введем в рассмотрение класс
.Определение
Классом вероятностная машина Тьюринга такая, что время ее работы на входе длинны не превосходит . У есть три конечных состояния: 'да', 'нет', 'не знаю' и 'не знаю'
называется множество языков, для которых существует.
Утверждение
Доказательство
Пусть язык вероятностная машина Тьюринга . Построим вероятностную машину Тьюринга , которая на входе работает следущим образом:
, тогда для него существует1) Запускает
.2) Если
или , то возвращает или соответственно. Если же , то перейдем к пункту 1.
сходится.
Таким образом
, значит .Пусть язык вероятностная машина Тьюринга такая, что , где .
, тогда для него существуетСделаем машину
, которая будет запускать на шагов, если не завершила свою работу, то выдаст 'не знаю', в противном случаи вернет результат работы .Пусть
, тогда — противоречие.Значит,
, следовательно .Таким образом
.Утверждение доказано.
Замечание
В дальнейшем будем рассматривать то определение класса
, которое более удобно.