Классические теоремы теории измеримых функций

Материал из Викиконспекты
Перейти к: навигация, поиск
Лемма:
[math]f_n[/math] — измерима на [math]E[/math] и [math]\mathcal {8}\delta \gt 0[/math], [math]\mu E(| f_n - f_m | \ge \delta)\xrightarrow[n,m \rightarrow 0]{} 0[/math]. Тогда [math]\exists n_1 \lt n_2 \lt \dots \lt n_k \lt \dots[/math] для которых [math]{f_{n_k}}(x) [/math] почти всюду сходится на [math]E[/math].
(Иначе - из сходимости в себе следует сходимость почти всюду на подпоследовательности).
Доказательство:
[math]\triangleright[/math]

[math]f_n \Rightarrow f[/math] на [math]E[/math]. [math]\mathcal{8} \delta \gt 0:[/math]
[math]E(|f_n - f_m| \geq \delta) \subset E(|f_n - f| \geq \frac{\delta}{3}) ~ \cup ~ E(|f_m - f| \geq \frac{\delta}{3}); [/math]
[math]\mu E(|f_n - f_m| \geq \delta) \leq \mu E(|f_n - f| \geq \frac{\delta}{3})(\rightarrow 0) + E(|f_m - f| \geq \frac{\delta}{3})(\rightarrow 0)[/math] (т.е. из сходимости по мере вытекает сходимость по мере в себе)

Возьмём [math]\forall \varepsilon_k \gt 0, \sum\limits_{k = 1}^\infty \varepsilon_k \lt +\infty[/math]. Например, [math]\varepsilon_k = \frac{1}{2^k}[/math].

В силу условия леммы, [math]\forall \varepsilon_k\ \exists n_1\ forall n, m \gt n_1 : \mu E(|f_n - f_m| \geq \varepsilon_1) \lt \varepsilon_1[/math]

[math]m = n_1[/math], [math]\forall n \geq m[/math]

[math]\varepsilon_2 : \exists n_2 \gt n_1\ \forall n \gt n_2 : \mu E(|f_n - f_{n_2}| \geq \varepsilon_2) \lt \varepsilon_2[/math]

Раз [math]n_2 \gt n_1[/math], [math]\mu E(|f_{n_2} - f_{n_1}| \geq \varepsilon_1) \lt \varepsilon_1[/math] (По выбору [math]n_1[/math])

[math]\varepsilon_3 : \exists n_3 \gt n_2\ \forall n \gt n_3 : \mu E(|f_n - f_{n_3}| \geq \varepsilon_3) \lt \varepsilon_3[/math]

Раз [math]n_3 \gt n_2[/math], [math]\mu E(|f_{n_3} - f_{n_2}| \geq \varepsilon_2) \lt \varepsilon_2[/math]

Продолжаем по индукции [math]n_1 \lt n_2 \lt n_3 \lt \cdots[/math]:

[math]\mu E(|f_{n_{k + 1}} - f_{n_k}| \geq \varepsilon_k) \lt \varepsilon_k[/math]

[math]B_k = \bigcup\limits_{j=k}^\infty E(|f_{n_{j + 1}} - f_{n_j}| \geq \varepsilon_j)[/math]

[math]\mu B_k \leq \sum\limits_{j=k}^\infty \mu E(|f_{n_{j + 1}} - f_{n_j}| \geq \varepsilon_j) \lt \sum\limits_{j = k}^\infty \varepsilon_j \o 0[/math] как остаток сходящегося положительного ряда [math]\varepsilon_k[/math].

[math]B = \bigcap\limits_{k=1}^\infty B_k[/math], [math]B \subset B_k[/math], по монотонности меры, [math]\mu B \leq \mu B_k \to 0[/math]. Значит, [math]\mu B = 0[/math].

[math]B[/math] — нульмерное множество. Рассмотрим [math]A = E \setminus B[/math] и установим, что на этом множестве последовательность функций [math]\{f_{n_k}\}[/math] сходится. А тогда, в силу нульмерности [math]B[/math], что она сходится на [math]E[/math] уже почти всюду.

[math]A = \bar B = \bigcap\limits_{k=1}^\infty \bar B_k[/math]

[math]x \in A : \exists k_x : x \in \bar B_{k_x}[/math]

[math]\bar B_{k_x} = \bigcap\limits_{j=k_x}^\infty E(|f_{n_{j + 1}} - f_{n_j} \lt \varepsilon_j|)[/math]

Раз [math]x \in \bar B_{k_x}[/math], [math]\forall j \geq k_x : |f_{n_{j + 1}}(x) - f_{n_j}(x)| \lt \varepsilon_j[/math]

[math]f_{n_1}(x) + \sum\limits_{j = 1}^\infty(f_{n_{j + 1}}(x) - f_{n_j}(x))[/math]

Для заданного [math]x[/math] начиная с [math]j = k[/math], [math]|f_{n_{j + 1}}(x) - f_{n_j}(x) | [/math] начнут мажорироваться сходящимся рядом [math]\varepsilon_k[/math]. Тогда этот ряд сходится. Значит, [math]\forall x\leq A[/math] функциональная последовательность сходится.
[math]\triangleleft[/math]