Эргодическая марковская цепь
Версия от 06:12, 28 декабря 2011; Whiplash (обсуждение | вклад)
Определение: |
Марковская цепь называется эргодической, если существует дискретное распределение (называемое эргодическим) , такое что и
|
Содержание
Основная теорема об эргодических распределениях
Теорема (Основная теорема об эргодических распределениях): |
Пусть - цепь Маркова с дискретным пространством состояний и матрицей переходных вероятностей . Тогда эта цепь является эргодической тогда и только тогда, когда она
Эргодическое распределение тогда является единственным решением системы:
|
Пример
Рассмотрим эксперимент по бросанию честной монеты. Тогда соответствующая этому эксперименту марковская цепь будет иметь 2 состояния. Рассмотрим матрицу, следующего вида:
.Такая матрица является стохастической, а, значит, корректно определяет марковскую цепь. Такая цепь является эргодической, так как существует эргодическое распределение
, такое что .См. также
Примечания
- ↑ Общий сток - такая вершина графа, что для любых двух различных вершин графа переходов , существуют ориентированные пути от вершины к вершине и от вершины к вершине .
- ↑ Свойство сообщаемости порождает на пространстве состояний отношение эквивалентности. Порождаемые классы эквивалентности называются неразложимыми классами.
Ссылки
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова" - Издательство "Наука", 1970 г - 129 c.