Теорема о рекурсии

Материал из Викиконспекты
Перейти к: навигация, поиск

Теорема о рекурсии

Теорема (О рекурсии):
Пусть [math]U[/math] - универсальная функция, [math]h[/math] - всюду определенная вычислимая функция. Тогда найдется такое [math]n[/math], что [math]U_n=U_{h(n)}[/math]
Доказательство:
[math]\triangleright[/math]

Начнем с доказательства леммы.

Лемма:
Пусть на натуральных числах задано отношение эквивалентности [math]\equiv[/math]. Тогда следущие два утверждения не могут быть выполнены одновременно:
  • Пусть [math]f[/math] - вычислимая функция. Тогда существует всюду определенное вычислимое [math]\equiv[/math]-продолжение [math]g[/math] функции [math]f[/math], т.е. такая [math]g[/math] что [math]D(g)=N[/math] и [math]\forall x[/math] такого что [math]f(x) \ne \perp[/math] выполнено [math]f(x) \equiv g(x)[/math]
  • Найдется такая всюду определенная вычислимая [math]h[/math] что [math]\forall n [/math] [math]h(n) \not\equiv n[/math]
Доказательство:
[math]\triangleright[/math]
Ололо
[math]\triangleleft[/math]
[math]\triangleleft[/math]


Источники

Н. К. Верещагин, А. Шень. Лекции по математической логике и теории алгоритмов. Часть 3. Вычислимые функции. -- М.: МЦНМО, 1999