Теорема Бейкера-Гилла-Соловэя

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.

Формулировка

[math]\exists{}[/math] оракулы [math]A[/math] и [math]B[/math] такие что

[math]P^A=NP^A[/math] [math]P^B\ne{}NP^B[/math]

1)[math]A[/math]=[math]TQBF[/math]

[math]NP^{TQBF}\subset{NPS^{TQBF}}=PS^{TQBF}=PS\subset{P^{TQBF}\subset{NP^{TQBF}}}[/math]

2) [math]B[/math]:[math]L_B=\{x|\exists{y}\subset{B}:|x|=|y|\}[/math]

Будем строить B такое, чтобы для всех М.Т. из Р с оракулом С, данная машина тьюринга "ошибалась" на входе некоторой длины, при ответе на вопрос, есть ли в B слово той же длины, что и вход.

Положим множество B пустым. 1. Переберем все машины тьюринга. Их счетное множество, каждая работает за полином. 2. Для текущей МТ найдем первую длину i, такую что для всех слов длины не менее i ни одна из уже отработавших МТ ничего не спрашивала про них у оракула. 3. Опишем поведение подходящего оракула. Пусть, если МТ М запущена на длине i, и задает вопросы оракулу C. Если М спросит С про слово длины не менее i, С должен ответить 0, одновременно запомнив, что это слово никогда не должно оказаться в В. Если же М спросит про уже включенные в В слова, С должен ответить 1. 4. Теперь заметим, что так как М работает за полином, а ни про одно слово из i ничего не известно, то М не успеет спросить про все слова длины i, их экспоненциальное количество, значит будет хотя бы одно слово длины i, про которое М не спросит. Теперь, если М ответит 1, то нужно чтобы в В не было ни одного слова длины i, иначе - добавим в B первое в лексикографическом порядке слово из В длины i, про которое М не спрашивала. 5. вернемся на шаг 1.

готово, построено множество слов В, такое что ни одна машина тьюринга из P с оракулом не сможет разрешить, но очевидно, что это множество из NP с оракулом