Свойства перечислимых языков. Теорема Успенского-Райса
Версия от 10:57, 2 января 2012; Vincent (обсуждение | вклад)
Определения
Рассмотрим множество перечислимых языков .
Определение: |
Свойством языков называется множество | .
Определение: |
Свойство называется тривиальным, если | или .
Определение: |
Язык свойства | — множество программ, языки которых обладают этим свойством: .
Определение: |
Свойство разрешимым. | называется разрешимым, если является
Теорема Успенского-Райса
Теорема: |
Никакое нетривиальное свойство языков не является разрешимым. |
Доказательство: |
Приведём доказательство от противного. Предположим, что разрешимо и нетривиально, — программа, разрешающая .Не умаляя общности, можно считать, что (в противном случае перейдём к , которое также будет разрешимым и нетривиальным).Поскольку непусто, то найдётся перечислимый язык . Пусть — полуразрешитель .Рассмотрим вспомогательную программу: if U(i, x) = 1 return else return Нетрудно понять, что в разумной модели вычислений номер этой программы можно вычислить по данным . Значит, можно рассмотреть такую программу:return Заметим, что Следовательно,— программа, разрешающая универсальное множество. Получили противоречие. |