Регулярная марковская цепь
Регулярная цепь Маркова
| Определение: |
| Марковская цепь называется регулярной (нормальной), если в матрице перехода P . |
В регулярной Марковской цепи из любого состояния можно попасть в любое другое за некоторое число ходов.
Лемма
| Лемма: |
Пусть — матрица перехода регулярной цепи, — минимальный элемент этой матрицы. Пусть х — произвольный r-мерный вектор-столбец, имеющий максимальный элемент и минимальный . Пусть и - максимальный и минимальный элементы . Тогда , и |
Доказательство:
Пусть х' - вектор, полученный из х заменой всех элементов, кроме на . Тогда . Каждый элемент имеет вид
, где а - элемент P, который домножается на , причем . Поэтому наше выражение не превосходит . Отсюда и из неравенства получается: .
Применяя те же рассуждения для вектора -х, получим: .
Складывая эти два неравенства, получаем , ч.т.д.
Основная теорема регулярных цепей
| Теорема: |
Пусть Р - регулярная переходная матрица. Тогда:
|
Доказательство:
Рассмотрим вектор-столбец , у которого j-й элемент равен 1, а все остальные равны 0. Пусть и - минимальный и максимальный элементы столбца . Так как , то из леммы следует, что и и
. Пусть , тогда
.
Значит сходится к вектору, все элементы которого равны между собой. Пусть - их общее значение. Тогда . Заметим, что - j-тый столбец матрицы . Рассмотрим все для . Тогда сходится к матрице А, у которой по строкам стоит один и тот же вектор . Так как в каждой матрице сумма элементов в строке равна 1, то то же самое справедливо и для предельной матрицы А. Теорема доказана.
Литература
Дж. Кемени, Дж. Снелл "Конечные цепи Маркова", стр 93