Независимые случайные величины

Материал из Викиконспекты
Версия от 19:54, 26 декабря 2012; Georgeee (обсуждение | вклад) (Скорректировал пример с игральной костью, добавил пример с картами)
Перейти к: навигация, поиск

Определения

Определение:
Cлучайные величины [math] \xi[/math] и [math]\eta[/math] называются независимыми, если [math]\forall \alpha ,\beta \in \mathbb R[/math] события [math][ \xi \leqslant \alpha ][/math] и [math][ \eta \leqslant \beta ][/math] независимы.
[math]P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)[/math]

Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.

Независимость в совокупности

Определение:
Случайные величины [math]\xi_1,...,\xi_n[/math] называются независимы в совокупности, если события [math]\xi_1 \leqslant \alpha_1,...,\xi_n \leqslant \alpha_n[/math] независимы в совокупности[1].

Примеры

Карты

Пусть есть колода из 36 карт (4 масти и 9 номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:

[math]\xi[/math] - масть вытянутой карты : 0 - червы, 1 - пики, 2 - крести, 3 - бубны

[math]\eta[/math] - номинал вытянутой карты : 0 - номиналы 6 7 8 9 10; 1 - валет, дама, король, туз

Для доказательства того, что [math]\xi, \eta[/math] независимы, требуется рассмотреть все [math]\alpha,\beta[/math] и проверить выполнение равенства: [math]P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)[/math]

Для примера рассмотрим [math]\alpha = 0, \beta = 0[/math], остальные рассматриваются аналогично: [math]P((\xi \leqslant 0)\cap(\eta \leqslant 0)) = \frac{5}{36}[/math]

[math]P(\xi \leqslant 0) \cdot P(\eta \leqslant 0) = \frac{1}{4} \cdot \frac{5}{9} = \frac{5}{36}[/math]

Тетраэдр

Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): [math]\Omega = \mathcal {f} 0, 1, 2, 3 \mathcal {g}[/math]. [math]\xi (i) = i~mod~2[/math], [math]\eta(i) = \left \lfloor i / 2 \right \rfloor[/math].

Рассмотрим случай: [math]\alpha = 0[/math], [math]\beta = 1[/math]. [math]P(\xi \leqslant 0) = 1/2[/math], [math]P(\eta \leqslant 1) = 1[/math], [math]P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = 1/2[/math].

Для этих значений [math]\alpha[/math] и [math]\beta[/math] события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.

Заметим, что если: [math]\xi (i) = i~mod~3[/math], [math]\eta(i) = \left \lfloor i / 3 \right \rfloor[/math], то эти величины зависимы: положим [math]\alpha = 0, \beta = 0[/math]. Тогда [math]P(\xi \leqslant 0) = 1/2[/math], [math]P(\eta \leqslant 0) = 3/4[/math], [math]P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = 1/4 \neq P(\xi \leqslant 0) P(\eta \leqslant 0)[/math].

Честная игральная кость

Рассмотрим вероятностное пространство «честная игральная кость»: [math]\Omega = \mathcal {f} 1, 2, 3, 4, 5, 6 \mathcal {g}[/math], [math]\xi (i) = i~mod~2[/math], [math]\eta (i) = \mathcal {b} i / 3 \mathcal {c}[/math]. Для того, чтобы показать, что величины [math]\xi, \eta[/math] зависимы, надо найти такие [math]\alpha, \beta[/math], при которых [math]P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)[/math]

[math]\alpha = 0, \beta = 1[/math], тогда [math]P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = \frac{2}{6} = \frac{1}{3}[/math], [math]P(\xi \leqslant 0) = \frac{1}{2}[/math], [math]P(\eta \leqslant 1) = \frac{5}{6}[/math]

[math]P((\xi \leqslant 0)\cap(\eta \leqslant 1)) \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 1)[/math], откуда видно, что величины не являются независимыми.

Примечания

Источники

Независимость случайных величин

Независимость (теория вероятностей) — Википедия