Cортировка слиянием с использованием O(1) дополнительной памяти
Содержание
Алгоритм слияния
На вход алгоритм получает массив, который состоит из двух отсортированных кусков:
Разобьем наш массив на подряд идущих блоков длиной . Остаток трогать не будем.
Найдем блок, содержащий конец первого отсортированного куска. Поменяем его с последним блоком. В дальнейшем будем использовать его как буфер обмена.
Отсортируем блоки по возрастанию по первому элементу (если первые элементы равны, тогда по последнему). Для этого подойдет любая квадратичная или более быстрая сортировка, которая требует дополнительной памяти. Здесь нам выгодно использовать алгоритм, линейный по числу обменов, т.е. подходит сортировка выбором.
Так как блоков
, то количество операций на этом шаге .
Пользуясь буфером обмена, последовательно сольем пары соседних блоков. В результате мы получим, что первые элементов исходного массива отсортированы.
Количество групп
, и каждое слияние работает за , поэтому количество операций на этом шаге .
Использование буфера обмена
Попытаемся слить первый и второй блок. Поменяем местами первый блок с буфером обмена. И, как в обычном слиянии, пользуясь двумя указателями, сливаем вторую группу и только что измененный буфер. Результат начинаем записывать с начала первой группы. Чтобы не потерять данные, вместо записи используем обмен элементов. Так как блоки имеют одинаковую длину, и между указателем на второй блок и указателем на запись расстояние равно длине блока, то слияние произойдет корректно.
Шаг 4
Пусть размер остатка
. Начиная с конца, разобьем наш массив на подряд идущие группы длиной s. Используя квадратичную или более быструю сортировку, которая требует дополнительной памяти , отсортируем подмассив длиной , который находится в конце. На последних местах будут находиться s максимальных элементов. Оставшаяся часть представляет собой массив, содержащий две отсортированные части, причем размер второй равен . По аналогии с шагом 3 в обратном порядке сливаем группы длиной .Количество операций на этом шаге
.Шаг 5
Опять, используя экономную по памяти, хотя и квадратичную, сортировку, отсортируем:
- остаток и первую группу.
- последнюю группу.
Не стоит забывать, что после новой разметки остаток находится в начале, а не в конце.
В результате массив будет отсортированным
Количество операций на этом шаге
.