Классы NC и AC
Определения
Определение: |
— множество языков, распознаваемых семейством логических схем полиномиального от размера, глубиной и со степенью входа каждого элемента не более 2, причем существует детерминированная машина Тьюринга, принимающая на вход и строящая соответствующую схему используя ячеек памяти, где — длина входа. |
Определение: |
определяется аналогично , за исключением того, что степень входа элемента неограничена. |
Определение: |
. |
Определение: |
. |
Теоремы
Теорема: |
. |
Доказательство: |
Это понятно из определения Пусть . распознается семейством схем полиномиального размера. Степень входа каждого элемента схемы не превосходит полинома от , поскольку степень входа не может превосходить число элементов в схеме. Заменим элементы схемы элементами со степенью входа не более 2 следующим образом:При такой замене глубина схемы увеличится не более чем в |
Следствие:
.
Теорема: |
. |
Доказательство: |
Пусть | . Тогда распознается некоторым семейством схем , таких, что существует детерминированная машина Тьюринга, строящая схему по , используя ячеек памяти. Конфигурация МТ задается положением головки и состоянием ячеек памяти, то есть у МТ может быть конфигураций. При построении схемы конфигурации не могут повторяться, иначе МТ зациклится, следовательно схема будет построена за полиномиальное от время. Построим для данного входа схему и вычислим её. На вычисление схемы будет затрачено полиномиальное время, так как размер схемы полиномиален.
Равенство
и — неразрешенная на данный момент задача.
Утверждение (тезис о связи | с параллельными алгоритмами):
распознается параллельным компьютером с процессоров за время тогда и только тогда, когда . |
(набросок доказательства) Пусть Пусть . распознается семейством схем , где размера и имеет глубину . Возьмем параллельный компьютер с процессорами, где каждый из них будет играть роль одного элемента схемы. Так как компьютер параллельный, то вычисления на каждом уровне схемы будут выполняться параллельно. Тогда получаем, что всего потребуется времени. распознается параллельным компьютером с процессоров за время . Построим схему глубины , на каждом уровне которой будет по элементов, таких, что -й элемент на уровне выполняет вычисления, производимые -м процессором в момент времени . Всего в схеме будет элементов. |