Задача многокритериальной оптимизации. Multiobjectivization

Материал из Викиконспекты
Версия от 01:48, 19 июня 2012; Dmkrasilnikov (обсуждение | вклад) (Получение оптимальных по Парето решений)
Перейти к: навигация, поиск

Определение

Мультикритериальная оптимизация - это процесс одновременной оптимизации двух или более конфликтующих целевых функций в заданной области определения.


Задача многокритериальной оптимизации

Постановка задачи

Определение:
Задача многокритериальной оптимизации:
[math]maximize \{f(x) = (f_1(x),\dots,f_K(x))\}[/math]
[math] x \in X[/math]
где [math] f(x) : X \rightarrow R^K[/math] - целевая вектор-функция, где [math]K \ge 2[/math]

Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество [math]X^* \subseteq X [/math] множество Парето оптимальных значений.

Множество Парето оптимальных значений

Определение:
Множество Парето оптимальных значений:
[math]\forall x^* \in X^* \not\exists x \in X [/math]:[math]x \succ x^*[/math], где [math]x \succ x^* \Leftrightarrow (\forall i \in 1..K, (f_i(x) \ge f_i(x^*))\land (\exists i \in 1..K, f_i(x) \gt f_i(x^*)))[/math]

Выражение [math]x \succ x^*[/math] означает, что [math]x[/math] доминирует над [math]x^*[/math]. Решения в Парето оптимальном множестве также являются эффективными или допустимыми.


Определение:
Для двух решений [math]x[/math] и [math]x'[/math] говорят [math]x \sim x'[/math] тогда и только тогда, когда [math]\exists i \in 1..K \colon f_i(x) \gt f_i(x') \land \exists j \in 1..K, j \ne i \colon f_j(x') \gt f_j(x)[/math] - такую пару решений называют несравнимой


Источники