Задача многокритериальной оптимизации. Multiobjectivization

Материал из Викиконспекты
Перейти к: навигация, поиск

Задача многокритериальной оптимизации

Постановка задачи

Определение:
Задача многокритериальной оптимизации:
[math]maximize \{f(x) = (f_1(x),\dots,f_K(x))\}[/math]
[math] x \in X[/math]
где [math] f(x) : X \rightarrow R^K[/math] - целевая вектор-функция, где [math]K \ge 2[/math]

Так как не существует единого решение, которое было бы максимальным для всех целевых функций, вместо него можно искать множество [math]X^* \subseteq X [/math] множество Парето оптимальных значений.

Множество Парето оптимальных значений

Определение:
Множество Парето оптимальных значений:
[math]\forall x^* \in X^* \not\exists x \in X [/math]:[math]x \succ x^*[/math], где [math]x \succ x^* \Leftrightarrow (\forall i \in 1..K, (f_i(x) \ge f_i(x^*))\land (\exists i \in 1..K, f_i(x) \gt f_i(x^*)))[/math]

Выражение [math]x \succ x^*[/math] означает, что [math]x[/math] доминирует над [math]x^*[/math].

Говорят, что [math]x[/math] доминирует над [math]x^*[/math]. по Парето, если [math]x[/math] не хуже [math]x^*[/math] по всем критериям и хотя бы по одному критерию превосходит [math]x^*[/math]. В таком случае в выборе [math]x^*[/math] нет смысла, т.к. [math]x[/math] по всем параметрам не уступает, а по каким-то и превосхожит [math]x^*[/math]. Если рассматривать всего два критерия то на рис. 1 показана область пространства, доминируемая данным решением А. Эта область «замкнута»: элементы на ее границе также доминируемы А

Рис.1 - Доминируемые решения


Определение:
Для двух решений [math]x[/math] и [math]x'[/math] говорят [math]x \sim x'[/math] тогда и только тогда, когда [math]\exists i \in 1..K \colon f_i(x) \gt f_i(x') \land \exists j \in 1..K, j \ne i \colon f_j(x') \gt f_j(x)[/math] - такую пару решений называют недоминируемой

На рис. 2 показана граница Парето для возможных решений в двухкритериальном пространстве

Рис.2 - Парето фронт

Множество Парето оптимальных недоминируемых решений называется Парето фронтом.

Multi-objectivization

Суть метода мульти-объективизации заключается в разбитии сложной задачи с одной целевой функцией на несколько подзадач, найти для каждой подзадачи решение и выбрать оптимальное решение.

Для выполнения оптимизации многокритериальной задачи мы должны добавить в целевую функцию новые параметры, либо должны добавить новые целевые функции.

Сложность этой процедуры заключается в разложении проблемы на ряд мелких независимых между собой подпроблем.

Алгоритмы

Hill-Climbers

Initialization: [math]P \leftarrow \emptyset [/math]
Init_pop[math](P)[/math]
Main Loop: [math]x_1 \leftarrow [/math]Rand_mem[math](P)[/math],[math]x'_2 \leftarrow [/math]Rand_mem[math](P)[/math]

[math]x'_1 \leftarrow [/math]Mutate[math](P)[/math],[math]x_2 \leftarrow [/math]Mutate[math](P)[/math]
if[math](H(x_1,x'_1)+H(x_2,x'_2) \gt H(x_1,x'_2)+H(x_2,x'_1))[/math]

Swap[math](x_1,x'_2)[/math]

if [math]f(x'_1) \gt f(x_1)[/math]

[math]P \leftarrow P \cup x'_1 \setminus x_1[/math]

if [math]f(x'_2) \gt f(x_2)[/math]

[math]P \leftarrow P \cup x'_2 \setminus x_2[/math]
Termination: return Best[math](P)[/math]

Задачи

Задача коммивояжера (TSP)является наиболее известно из всего класса [math]NP[/math]-сложных задач. Формулируется задача следующим образом:

Задано [math]C=\{c_1,c_2,\dots,c_N\} [/math]- множество городов и для каждой пары [math]\{c_i,c_j\}[/math] задано расстояние. Наша цель - найти цепь из городов, минимизирующую величину:

[math]\sum^{N-1}_{i=1} d(C_{\pi(i)},C_{\pi(i+1)})+d(C_{\pi(N)},C_{\pi(1)})[/math]

Для того, чтобы объектизировать эту задачу, нам необходимо определить подзадачи. TSP - является [math]NP[/math]-сложной именно потому, что нет хорошего разложения этой задачи.

Разобьём задачу таким образом:

[math]minimize\{f(\pi,a,b) = (f_1(\pi,a,b),f_2(\pi,a,b))\}[/math]
where[math]f_1(\pi,a,b)=\sum^{\pi^{-1}(b)-1}_{i=\pi^{-1}(a)} d(C_{\pi(i)},C_{\pi(i+1)})[/math]
and [math]f_2(\pi,a,b)=\sum^{N-1}_{i=\pi^{-1}(b)} d(C_{\pi(i)},C_{\pi(i+1)}) + \sum^{\pi^{-1}(a)-1}_{i=1} d(C_{\pi(i)},C_{\pi(i+1)}) [/math] [math]+ d(C_{\pi(N)},C_{\pi(1)})[/math],

где [math]a[/math] и [math]b[/math] - два города, указанных априори.

Предполагается, что [math]a[/math] и [math]b[/math] выбраны произвольно.

Источники