Схема Бернулли

Материал из Викиконспекты
Перейти к: навигация, поиск

Распределение Бернулли в теории вероятностей и математической статистике — дискретное распределение вероятностей, моделирующее случайный эксперимент произвольной природы, когда заранее известна вероятность успеха или неудачи.

Определение

Определение:
Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в каждом испытании происходит с одной и той же вероятностью [math] p \in \mathbb (0, 1)[/math] , а неудача — с вероятностью q = 1 − p.


Теорема:
Для любого k = 0, 1, . . . , n вероятность получить в n испытаниях k успехов равна P([math]v_{n} [/math] = k) = [math]\binom{n}{k}[/math] [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
Доказательство:
[math]\triangleright[/math]
Событие A = {[math] v_{n} [/math] = k} означает, что в n испытаниях схемы Бернулли произошло ровно k успехов. Рассмотрим один элементарный исход из события A: когда первые k испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна [math] p ^ {k} [/math] [math] (1-p) ^ {n - k} [/math] Другие элементарные исходы из события A отличаются лишь расположением k успехов на n местах. Есть ровно [math]\binom{n}{k}[/math] cпособов расположить k успехов на n местах. Поэтому событие A состоит из [math]\binom{n}{k}[/math] элементарных исходов, вероятность каждого из которых равна [math] p ^ {k} [/math] [math] q ^ {n - k}[/math]
[math]\triangleleft[/math]

Пример

Правильная монета подбрасывается 10 раз. Найти вероятность того, что герб выпадет от 4 до 6 раз.

Вычислим отдельно вероятности получить 4, 5 и 6 гербов после десяти подбрасываний монеты.

P([math]v_{10}[/math] = 4) = [math]\binom{10}{4}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {4} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 4} [/math] [math]~\approx ~ 0{.}205 [/math]

P([math]v_{10}[/math] = 5) = [math]\binom{10}{5}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {5} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 5}[/math] [math]~\approx ~ 0{.}246 [/math]

P([math]v_{10}[/math] = 6) = [math]\binom{10}{6}[/math] [math] \genfrac{}{}{}{0}{1}{2}^ {6} [/math] [math] \genfrac{}{}{}{0}{1}{2}^ {10 - 6} [/math] [math]~\approx ~ 0{.}205 [/math]

Сложим вероятности несовместных событий: P(4)([math] \le [/math][math] v_{10}[/math] [math] \le [/math]6) = P([math] v_{10} [/math] = 4) + P([math] v_{10} [/math] = 5) + P([math] v_{10} [/math] = 6) [math] ~\approx ~ 0{.}656 [/math]

Теорема:
Вероятность того, что первый успех произойдёт в испытании с номером [math]k \in \mathbb N = {1, 2, 3, . . .}, равна P(r = k) = pq^ {k - 1} [/math]
Доказательство:
[math]\triangleright[/math]
Вероятность первым [math] k [/math] − 1 испытаниям завершиться неудачей, а последнему — успехом, равна [math] P(r = k) = pq^{k - 1} [/math]
[math]\triangleleft[/math]

Набор вероятностей [math] pq^ {k - 1} [/math], где k принимает любые значения из множества натуральных чисел, называется геометрическим распределением вероятностей. Геометрическое распределение вероятностей обладает интересным свойством отсутствия последействия, означающим «нестарение» устройства, время жизни которого подчинено геометрическому распределению.

Теорема:
Пусть [math] P(r = k) = pq^{k - 1} [/math] для любого [math] k \in \mathbb N [/math]. Тогда для любых неотрицательных целых n и k имеет место равенство: [math] P(r \gt n + k | r \gt n) = P(r \gt k) [/math]
Доказательство:
[math]\triangleright[/math]

По определению условной вероятности, [math] P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k, r \gt n)}{P(r \gt n)} = \genfrac{}{}{}{0}{P(r \gt n + k)}{P(r \gt n)} [/math] (9) Последнее равенство верно в силу того, что событие [math] {r \gt n + k} [/math] влечёт событие [math]{r \gt n}[/math], поэтому их пересечением будет событие [math]{r \gt n + k}[/math]. Найдём для целого [math] m \ge [/math] 0 вероятность [math]P(τ \gt m)[/math] : событие [math] r \gt m [/math] означает, что в схеме Бернулли первые m испытаний завершились «неудачами», то есть его вероятность равна [math] q^{m}[/math]. Возвращаясь к (9), получим

[math]P(r \gt n + k | r \gt n) = \genfrac{}{}{}{0}{P(r \gt n + k)}{P(r \gt n)}= \genfrac{}{}{}{0}{q^{n + k}{q^{n} = q^{k} = P(τ \gt k)[/math].
[math]\triangleleft[/math]