Отношение рёберной двусвязности
Версия от 06:53, 7 октября 2010; Andrey.Eremeev (обсуждение | вклад)
Реберная двусвязность
Определение: |
Две вершины | и графа называются реберно двусвязными, если между этими вершинами существуют два реберно непересекающихся пути.
Теорема: |
Отношение реберной двусвязности является отношением эквивалентности на вершинах. |
Доказательство: |
Пусть - отношение реберной двусвязности. Рефлексивность: (Очевидно)Коммутативность: (Очевидно)Транзитивность: и Доказательство: Пусть и - реберно непересекащиеся пути. Выберем вершины и так, что иПолучим два реберно непересекающихся пути Если и Действительно, (реберная двусвязность и ). (реберная двусвязность и ) {какой-то путь} или {какой-то путь}, то тогда вершины и не связаны отношением реберной двусвязности. |
Компоненты реберной двусвязности
Определение: |
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности. |