Собственные векторы и собственные значения

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
пусть [math]A:X \to X[/math] - линейный оператор (ЛО)
[math]x\ne 0_x[/math] называется собственным вектором[math]A[/math], если [math]x \in L[/math], где [math]L[/math] - инвариантное подпространство [math]A[/math], b [math]dimL = 1[/math]


Определение:
пусть [math]A:X \to X[/math]
[math]x\ne 0_x[/math] называется собственным вектором[math]A[/math], если существует [math]\lambda \in F : Ax = \lambda x[/math]


// здесь лемма что эквивалентны


Определение:
[math]\lambda[/math] в равенстве [math]Ax = \lambda x[/math] называется собственным числом(собственным значением) ЛО [math]A[/math]


Определение:
спектром [math]\sigma[/math] ЛО называется множество всех его собственных значений