Подгруппа

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Если непустое подмножество [math]H[/math] элементов группы [math]G[/math] оказывается замкнутым относительно групповой операции и операции взятия обратного элемента, то [math]H[/math] образует группу и называется подгруппой группы [math]G[/math]:
[math]\forall a,b\in H\subseteq G : a\cdot b\in H[/math]
[math]\forall a\in H : a^{-1}\in H[/math]
[math]\exists a\in H \Rightarrow e=a\cdot a^{-1} \in H[/math]


Примеры

  • Подмножество [math]n\mathbb{Z}=\{nm\vert m\in\mathbb{Z}\}[/math] является подгруппой в [math]\mathbb{Z}[/math] для любого [math]n\in\mathbb{N}[/math] относительно операции сложения.
  • Группа [math]G=\{m\vert m\in\mathbb{Z}\[/math], [math]m[/math] [math]mod[/math] [math]5=0\}[/math] является подгруппой в [math]\mathbb{Z}[/math].

Свойства

Нормальные подгруппы

Основная статья: нормальная подгруппа
Определение:
Подгруппа [math]H[/math] группы [math]G[/math] называется нормальной подгруппой, если [math]\forall x\in G,\,\forall h\in H : x\cdot h\cdot x^{-1}\in H[/math]