Список заданий по АСД
Версия от 19:35, 26 сентября 2013; 194.85.160.133 (обсуждение)
<wikitex>
Дискретная математика, алгоритмы и структуры данных, 3 семестр
Некоторые задания можно найти в книге Харари, Теория графов
- Доказать, что если из $u$ достижима $v$, то существует простой путь из $u$ в $v$.
- Доказать, что если в ориентированном графе существует цикл, то в нем существует и простой цикл.
- Доказать, что если в неориентированным графе существует цикл, то в нем существует и простой цикл.
- Петя придумал отношение средней связности: $u$ средне связана с $v$, если из $u$ достижима $v$ или из $v$ достижима $u$. Является ли это отношение отношением эквивалентности?
- Пусть граф $G$ - объединение двух различных простых путей из $u$ в $v$. Докажите, что в $G$ есть цикл.
- Харари 2.3
- Харари 2.5
- Харари 2.9
- Харари 2.13
- Харари 2.15
- Будем говорить, что $G$ связан короткими путями, если между любыми двумя вершинами в $G$ есть путь длины не более 3. Докажите, что либо $G$, либо $\overline G$ связан короткими путями.
- Харари 2.16
- Харари 2.20
- Доказать теорему об эквивалентности утверждений для точек сочленения.
- Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения.
- Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост.
- Какое максимальное число точек сочленения может быть в графе с $n$ вершинами?
- При каких соотношениях $a$, $b$, $n$, $m$, $k$ существует граф с $a$ точками сочленения, $b$ мостами, $n$ вершинами, $m$ рёбрами, $k$ компонентами связности?
- Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это рефлексивно-транзитивное замыкание $R$.
- Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой.
- Харари 3.2
- Харари 3.3
- Харари 3.4
- Харари 3.5
- Харари 3.6
- Рассмотрим неориентированный граф $G$. Запустим dfs, затем ориентируем рёбра дерева dfs $T$ от корня, а остальные - к корню. Доказать, что компоненты сильной связности в получившемся графе равны компонентам рёберной двусвязности в исходном графе
- Разработать алгоритм поиска компонент рёберной двусвязности, используя ровно один запуск dfs.
- Разработать алгоритм поиска компонент вершинной двусвязности, используя ровно один запуск dfs.
- Пусть $T$ - дерево dfs. Укажите способ за $O(E)$ посчитать число пар $(e_1, e_2)$, таких что 1) $e1 \in T$; 2) $e2\not\in T$; 3) граф $G$ после удаления рёбер $e_1$ и $e_2$ - не связен.
- Пусть $T$ - дерево dfs. Укажите способ за $O(E)$ посчитать число пар $(e_1, e_2)$, таких что 1) $e1 \in T$; 2) $e2 \in T$; 3) граф $G$ после удаления рёбер $e_1$ и $e_2$ - не связен.
- Петя неправильно написал алгоритм подсчёта up, делая up[u] = min(up[u], up[v]) даже если ребро uv - обратное. Будет ли у него работать поиск мостов?
- Петя неправильно написал алгоритм подсчёта up, делая up[u] = min(up[u], up[v]) даже если ребро uv - обратное. Будет ли у него работать поиск точек сочленения?
- В первом издании Кормена была ошибка. Там было сказано, что вершина v есть точка сочленения тогда и только тогда, когда (v - корень И у v ≥ 2 сына) ИЛИ (v - не корень И up[v] ≥ enter[v]). Приведите контрпример.
- Граф называется вершинно трёхсвязным, если он остаётся связным после удаления любых двух вершин. Доказать или опровергнуть, что в вершинно трёхсвязном графе любые три вершины лежат на цикле.
- Граф называется вершинно k-связным, если он остаётся связным после удаления любых (k - 1) вершин. Доказать или опровергнуть, что в вершинно k-связном графе любые k вершин лежат на цикле.
- Пусть $G$ - связный граф. Обозначим как $\kappa(G)$ - минимальное число вершин, которое необходимо удалить, чтобы граф потерял связность. (для полного графа это число равно n - 1), $\lambda(G)$ - минимальное число рёбер, которое необходимо удалить, чтобы граф потерял связность, $\delta(G)$ - минимальную степень в вершины в графе $G$. Докажите, что $\kappa(G) \le \lambda(G) \le \delta(G)$.
- Докажите, что для любых $a$, $b$, $c$, таких что $1 \le a \le b \le c$, существует граф $G$, такой что $\kappa(G) = a$, $\lambda(G) = b$, $\delta(G) = c$.
- Харари 4.2
- Харари 5.5
- Харари 5.6
- В условиях теоремы Дирака предложить алгоритм нахождения в графе гамильтонова цикла.
- Теорема Оре: если для любых вершин $u$ и $v$, не соединенных ребром, сумма степеней $deg(u) + deg(v) \ge n$, то в графе существует Гамильтонов цикл. В условиях теоремы Оре предложить алгоритм нахождения в графе гамильтонова цикла.
- В условиях теоремы Хватала предложить алгоритм нахождения в графе гамильтонова цикла.
- Харари 7.2
- Харари 7.4
- Харари 7.5
- Харари 7.7
- Харари 7.9
- Харари 7.14
- Харари 7.17
- Харари 7.18
</wikitex>