Расчёт вероятности поглощения в состоянии
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя . Составим матрицу G, элементы которой равны вероятности того, что, выйдя из i, попадём в поглощающее состояние j.
| Теорема: | 
| Доказательство: | 
| Пусть этот переход будет осуществлён за r шагов: i → → → ... → → j, где все являются несущественными. Тогда рассмотрим сумму , где - матрица переходов между несущественными состояниями, R - из несущественного в существенное.Матрица G определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи | 
Псевдокод
Пусть  - количество состояний Марковской цепи,  - количество переходов. Состояния пронумерованы от  до , переходы от  до .  Входные данные хранятся в массиве  где -ая строка характеризует -ый переход таким образом:  - вероятность перехода из состояния  в состояние .
Создадим массив  типа boolean, где -ое true обозначает что -ое состояние является поглощающим и наоборот. Обнаружим поглощающие состояния по такому признаку: если состояние поглощающее, то с вероятностью 1 оно переходит само в себя. Также посчитаем количество поглощающих состояний .
for i = 0 to m - 1
   if input[i][0] == input[i][1] and input[i][2] == 1
      absorbing[input[i][0]] = true
      abs++
Найдем число несущественных состояний . Теперь нужно заполнить матрицы  (переходов между несущественными состояниями) и  (переходов из несущественных состояний в поглощающие). Для этого создадим сначала массив  где -ый элемент указывает под каким номером будет находиться -ое состояние среди существенных если оно существенное или несущественных в обратном случае, и заполним эти массивы.
count_q = 0
count_r = 0
for i = 0 to n - 1
   if absorbing[i]
      position[i] = count_r
      count_r++
   else 
      position[i] = count_q
      count_q++
for i = 0 to m - 1
   if absorbing[input[i][1]]
      if !absorbing[input[i][0]]
         R[position[input[i][0]]][position[input[i][1]]] = input[i][2]
   else
      Q[position[input[i][0]]][position[input[i][1]]] = input[i][2]
Найдем Матрицу  и создадим единичную матрицу .
for i = 0 to nonabs - 1
   N[i][i] = 1
   E[i][i] = 1
   for j = 0 to nonabs - 1
      E[i][j] -= Q[i][j]  
Теперь приведем матрицу  к единичной методом Гаусса - Жордана, применяя те же преобразования к матрице .
for i = 0 to nonabs - 1 if E[i][i] 1 mul = E[i][i] for j = 0 to nonabs - 1 E[i][j] /= mul N[i][j] /= mul for row = 0 to nonabs - 1 if i row mul = E[row][i] for j = 0 to nonabs - 1 E[row][j] -= mul * E[i][j] N[row][j] -= mul * N[i][j]
В результате   т.е.  - фундаментальная матрица Марковской цепи. Найдем матрицу .
for i = 0 to nonabs - 1
   for j = 0 to abs - 1
      G[i][j] = 0
      for k = 0 to nonabs - 1
         G[i][j] += N[i][k] * R[k][j]
Выведем ответ: в -ой строке вероятность поглощения в -ом состоянии. Естественно, для несущественного состояния это , в ином случае  где  - номер соответствующий -ому состоянию в матрице  (т.е. под которым оно располагалось в матрице  т.е. значение ). Прибавлять 1 нужно т.к. вероятность поглотиться в -ом поглощающем состоянии, оказавшись изначально в нем же равна 1.
for i = 0 to n - 1
   prob = 0
   if absorbing[i]
      for j = 0 to nonabs - 1
         prob += G[j][position[i]]
      prob++
      prob /= n
   println(prob)
Литература
- Википедия - Цепи Маркова
- Кемени Дж., Снелл Дж. "Конечные цепи Маркова".
