Пересечение полуплоскостей, связь с выпуклыми оболочками
Версия от 22:20, 21 февраля 2014; Igorjan94 (обсуждение | вклад)
Задача: есть конечное множество полуплоскотей, найти фигуру их пересечения или сообщить что оно пусто.
Для начала заметим, что если пересечение не пусто, то оно выпукло. (Доказательство — Пересечение выпуклых фигур выпукло, а полуплоскоть выпукла)
Рассмотрим отображение
между точками и прямыми, такое что:
Будем обозначать, что
,Факт дуализма:
- Точка лежит под/на/над прямой тогда и только тогда, когда лежит под/на/над прямой ;
Тогда точка
принадлежит тогда и только тогда, когда существует такая не вертикальная прямая , что лежит под .Перефразируем для dual-пространства:
- Существует точка на прямой лежит под любой прямой из
Источники
- Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars (2008), Computational Geometry: Algorithms and Applications (3rd edition), Springer-Verlag, ISBN 978-3-540-77973-5 Chapter 11 page 253-254
- http://wwwisg.cs.uni-magdeburg.de/ag/lehre/SS2012/GAG/slides/V12.pdf