Дифференциальные уравнения

Материал из Викиконспекты
Перейти к: навигация, поиск

Дифференциальные уравнения

Определения

Определение:
Соотношение вида [math]F(x, y(x), {y}'(x), ... , y^{(n)}(x)) = 0[/math] [math](1)[/math] называется обыкновенным дифференциальным уравнением (ОДУ).


Определение:
Порядок наивысшей производной входящей в уравнение называется порядком уравнения.


Определение:
[math]F(x, y(x), {y}'(x)) = 0[/math] [math](2) - [/math] дифференциальное уравнение 1-го порядка


Определение:
Решением дифференциального уравнения [math](2)[/math] называется функция [math]y(x) \in C(a,b):[/math]
[math]F(x, y(x), {y}'(x)) \equiv 0[/math]


Определение:
[math]\frac{dy}{dx}=f(x,y) - [/math] уравнение в нормальной форме.


Определение:
Изоклиной ДУ(3) называется кривая определяемая равенством <tex>f(x,y)=k<\tex> где <tex>k - const, tg\alpha = k<\tex>.

Задача Коши

Определение:
.