Обсуждение участницы:Анна

Материал из Викиконспекты
Перейти к: навигация, поиск

Перечисления графов

Помеченные графы

Определение:
Помеченный граф с [math]n[/math] вершинами — граф, у которого каждая вершина помечена целым числом от [math]1[/math] до [math]n[/math].


Более формально определить это понятие можно так: назовем распределением [math]f[/math] меток в графе [math]G[/math] с [math]n[/math] вершинами биекцию между множеством вершин графа и множеством [math]\{1 \cdots n\}[/math]. Тогда помеченным графом называется пара [math](G, f)[/math].


Определение:
Два помеченных графа [math](G_{1}, f_{1})[/math] и [math](G_{2}, f_{2})[/math] изоморфны, если существует изоморфизм между [math]G_{1}[/math] и [math]G_{2}[/math], сохраняющий распределение меток.


Все помеченные графы с тремя вершинами показаны на рисунке 1. [math]4[/math] различных графа с [math]3[/math] вершинами приводят к [math]8[/math] различным помеченным графам.

Рис. 1. Помеченные графы с тремя вершинами.

Для нахождения числа помеченных графов с [math]p[/math] вершинами нужно заметить, что каждое из [math] p\choose 2[/math] возможных ребер либо принадлежит графу, либо нет.

Теорема (1):
Число помеченных графов с [math]p[/math] вершинами равно [math] 2^{p\choose 2}[/math].

Следовательно, число помеченных графов с [math]q[/math] ребрами равно [math] {p\choose 2}\choose q[/math].

Теорема (Кэли):
Число помеченных деревьев с [math]p[/math] вершинами равно [math] p^{p - 2}[/math].
Теорема (2):
Данный граф [math]G[/math] можно пометить [math]\frac{p!}{|\Gamma(G)|}[/math] способами.
Доказательство:
[math]\triangleright[/math]

Приведем набросок доказательства.

Пусть [math]A[/math] — группа подстановок, действующая на множестве [math]X[/math]. Для всякого элемента [math]x \in X[/math] орбитой [math]\Theta(x)[/math] элемента [math]x[/math] называется подмножество множества [math]X[/math], состоящее из всех элементов [math]y \in X[/math] таких, что [math]\alpha \cdot x = y[/math] для некоторой подстановки [math]\alpha[/math] из [math]A[/math]. Стабилизатором [math]A(x)[/math] элемента [math]x[/math] называется подгруппа группы [math]A[/math], состоящая из всех подстановок из [math]A[/math], оставляющих элемент [math]x[/math] неподвижным. Теорема является следствием соотношения [math]|A| = |\Theta(x)|\cdot|A(x)|[/math] и его интерпретации в настоящем контексте.
[math]\triangleleft[/math]