Busy beaver
Поиск усердных бобров (англ. busy beaver) — известная задача в теории вычислимости. Под усердным бобром в теории вычислимости понимают машину Тьюринга с заданным числом состояний конечного автомата, которая будучи запущенной на пустой ленте, записывает на нее максимальное количество ненулевых символов и останавливается.
В данном конспекте будет рассмотрена функция, которая используется в этой задаче для подсчета числа шагов для завершения программы при определенном числе состояний.
Определение: |
— функция от натурального аргумента , равная максимальному числу шагов, которое может совершить программа длиной символов и затем остановиться. |
Утверждение: |
Функция не убывает. |
В данной задаче существует функция Теперь покажем, что Для того, чтобы поместить одну единицу на ленту, требуется совершить хотя бы 1 шаг. Из этого следует, что растет быстрее, чем . Сделовательно, монотонно возрастает. | , которая в зависимости от числа состояний возвращает максимальное число единиц, которое может быть записано на ленту машиной-чемпионом. Именно машина-чемпион является усердным бобром. Из смысла задачи следует, что функция не убывает.
Утверждение: |
вычислимой функции , то есть для всех кроме конечного числа выполнено растет быстрее любой всюду определенной неубывающей |
Докажем, что для любой вычислимой функции
:
k = десятичная запись числа n
m = f(k)
for i = 1 to m + 1
шаг программы
Каждая такая программа делает как минимум Длина шагов. будет равна , где — длина кода без десятичной записи . Пусть — решение уравнения . Тогда для всех натуральных будет выполнено неравенство: . Данный переход корректен, так как мы доказали, что — монотонно возрастающая функция. Так как конечно, то мы всегда можем найти такие значения , при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано. |
Вывод: доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что
невычислима.См. также
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)
- Английская Википедия — Busy beaver
- Федотов П.В., Царев Ф.Н., Шалыто А.А. — Задача поиска усердных бобров и ее решения