Основные понятия и теорема Пикара
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Определения
| Определение: |
| Соотношение вида называется обыкновенным дифференциальным уравнением (ОДУ). |
| Определение: |
| Порядок наивысшей производной входящей в уравнение называется порядком уравнения. |
| Определение: |
| дифференциальное уравнение 1-го порядка |
| Определение: |
| Решением дифференциального уравнения называется функция |
| Определение: |
| уравнение в нормальной форме. |
| Определение: |
| Изоклиной ДУ называется кривая определяемая равенством , где . |
| Определение: |
| Общим решением ДУ 1-го порядка для любого наперед заданного значения решение ДУ |
Задача Коши
| Определение: |
| Задача нахождения решения дифференциального уравнения , которое удовлетворяет следующим условиям: называется задачей Коши (начальной задачей) |
в некоторых случаях удается упростить решение задачи Коши наложив ограничения на
| Определение: |
| условие Липшица: для некоторой константы |
Очевидно, условие Липшица выполняется при условии .
| Теорема (Пикар): |
Пусть удовлетворяет условию Липшица и , тогда существует единственное решение задачи Коши
, где . |
| Доказательство: |
|
Переформулируем задачу Коши следующим образом: |
Особые точки и особые решения
| Определение: |
| Пусть уравнение 1-го порядка удовлетворяет условию теоремы Пикара, тогда любая точка из области D называется обыкновенной точкой. Иначе она называется особой. |
| N.B.: |
| Через особые точки не проходит ни одной кривой, либо их не меньше двух. |
| Определение: |
| Особым решением называется решение, которое не удовлетворяет условию единственности. |
| N.B.: |
| Особое решение обладает тем свойством, что в любой окрестности любой его точки существуют, по крайней мере, две интегральные кривые, проходящие через эту точку. |